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We propose a ladder-operator method for obtaining the squeezed states of general symmetry
systems. It is a generalization of the annihilation-operator technique for obtaining the coherent states
of symmetry systems. We connect this method with the minimum-uncertainty method for obtaining
the squeezed and coherent states of general potential systems, and comment on the distinctions
between these two methods and the displacement-operator method.

PACS numbers: 03.65.—w, 02.20.—a, 42.50.—p

Coherent states are important in many fields of the-
oretical and experimental physics [1,2]. Similarly, the
generalization of coherent states, squeezed states, has be-
come of more and more interest in recent times [3,4]. This
is especially true in the fields of quantum optics [5] and
gravitational wave detection [6].

However, one limitation is that, with the exception we
describe below, essentially all work on squeezed states
has concentrated on the harmonic oscillator system. In
this Letter we describe a generalization of squeezed states
to arbitrary symmetry systems, and its relationship to
squeezed states obtained for general potentials.

We begin by reviewing coherent states and squeezed
states.

(1) Displacement-operator method.—For the harmonic
oscillator, coherent states are described by the unitary
displacement operator acting on the ground state [7,8]:

D(a)|0)= explaa’ — a*a]|0)
1, a”
= exp |~ lof*] 3= S

The generalization of this method to arbitrary Lie groups
has a long history [1,2,7,9]. One simply applies the dis-
placement operator, which is the unitary exponentiation
of the factor algebra, onto an extremal state.

As to squeezed states, this method has basically only
been applied to harmonic oscillatorlike systems |[3,4].
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One applies the SU(1,1) displacement operator onto the
coherent state,

D(a)$(2)[0) = [(,2)),  S(2) = exp[zKy — 2*K_],

(2)

where K, K_, and Ky form an su(1,1) algebra among
themselves:

Ky =1a'a', K_=1laa, Ko=1i(a'a+3), @3

(Ko, Ki]=+Ky, [Ki,K_]=-2K,. (4)
The ordering of DS vs SD in Eq. (2) is unitarily equiv-
alent, amounting to a change of parameters. (Supersym-
metric extensions of the above exist [10].)

(2) Ladder- (annihilation-) operator method.—For the
harmonic oscillator, the coherent states are the eigen-
states of the destruction operator:

ala) = ala). (5)

This follows from Eq. (1), since 0 = D(a)al0) = (a —
a)la). These states are the same as the displacement-
operator coherent states. The generalization to arbitrary
Lie groups is straightforward, and has also been widely
studied [1,2].

(8) Minimum-uncertainty method—This method,
which intuitively harks back to Schrodinger’s discovery
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of the coherent states [11], has been applied to gen-
eral Hamiltonian potential systems, to obtain both gen-
eralized coherent states and generalized squeezed states
[12,13]. One starts with the classical problem and trans-
forms it into the “natural classical variables,” X, and P,
which vary as the sin and the cos of the classical wt. The
Hamiltonian is therefore of the form P2+ X2. One then
takes these natural classical variables and transforms
them into “natural quantum operators.” Since these are
quantum operators, they have a commutation relation
and uncertainty relation:

(X, P] =G, (AX)*(AP)? > 4(G)*. (6)

The states that minimize this uncertainty relation are
given by the solutions to the equation

Yhse= (X + %P) Pss
_ ((X) + %(P)) Pes. (7

Note that of the four parameters (X),(P),(P?), and
(G), only three are independent because they satisfy the
equality in the uncertainty relation. Therefore,

AX

B="=

(X+1BP)1/)33=C¢33, AP’

C = (X) +iB(P).

(8)

Here B is real and C is complex. These states, ¢s5(B, C),
are the minimum-uncertainty states for general poten-
tials [12,13]. Using later parlance, they are the squeezed
states for general potentials [4]. Then B can be ad-
justed to By so that the ground eigenstate of the po-
tential is a member of the set. Then these restricted
states, ¥ss(B = Bg, C) = ¥es(Bo, C), are the minimum-
uncertainty coherent states for general potentials.

It can be intuitively understood that v,,(B,C) and
1ss(Bo, C) are the squeezed and coherent states by recall-
ing the situation for the harmonic oscillator. The coher-
ent states are the displaced ground state. The squeezed
states are Gaussians that have different widths than that
of the ground state Gaussian, which are then displaced.

New ladder-operator method for general squeezed
states.—General annihilation-operator (or ladder-
operator) coherent states are the eigenstates of the lower-
ing operator (given a lowest extremal state). We now pro-
pose a generalization to squeezed states, including those
for arbitrary symmetry systems: The general ladder-
operator squeezed states are the eigenstates of a linear
combination of the lowering and raising operators. (See
comment ITI, below, concerning previous special cases.)

We will show how the minimum-uncertainty method
for obtaining generalized squeezed states can be used
as an intuitive tool to aid in understanding the ladder-
operator method for obtaining generalized squeezed
states. We will do this with two specific examples. Once
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that is done, the ladder-operator method can be applied
to general symmetry systems, independent of whether
they come from a Hamiltonian system in the manner
of the minimum-uncertainty method above. Such is our
third example.

Ezample I.—First we reexamine the harmonic oscil-
lator, starting from the minimum-uncertainty method.
Here X and P are obviously = and p. (We use dimen-
sionless units.) Then we have

d

Y = 2—, 9
S (9)
where we have presciently labeled B as s2. (For the limit

to coherent states, it turns out that B = 1.)
Now writing  and p in terms of creation and annihi-
lation operators, ¢ = (a+ a')/v/2, p = (a — a')/iv/2, we

find

ﬁ[a(l—;s2>+a1(1—232>:| ¢53(32,$0+i32p0)

= [0 + i5%po)wss (8%, o + is®po). (10)

Therefore, the squeezed states are eigenstates of a linear
combination of the annihilation and creation operators.
Specifically, these states are

Yss(T) = [7rsz]_1/4 exp [_(x_—aio)_z_ + ipoa:] .1

252

The relationships to the displacement-operator parame-
ters are z = re*®, r = Ins, V2R(a) = xo, and v/2Z(a) =
po. (The phase, ¢, is an initial time displacement.)

We note, with hindsight, that the success of this
method will not be totally surprising. In many exactly
solvable potential systems, the natural quantum opera-
tors of the minimum-uncertainty method were found to
be Hermitian combinations of the n-dependent raising
and lowering operators [12,13]. Here, however, one must
generalize to full operators: n — n(H). Furthermore,
in other harmonic-oscillator-like systems, with a Bogoli-
ubov transformation, this method applies. (See below.)

Example II—We demonstrate this method with the
symmetry of the harmonic oscillator with centripetal bar-
rier. Previously, the coherent states for this particu-
lar example were found with the minimum-uncertainty
method, but not the squeezed states [13]. Therefore, it is
an ideal system since, at the end, we can connect to the
coherent states obtained from the minimum-uncertainty
method.

This system contains an su(1,1) algebra [14]. Its ele-
ments are

1 d> _ 1 d

1
Ly=—a9% 1,82 -z 12
= pdz T Tat Tt (12)

H v 2,1 2
LO—E+§, H——d—z§+v (—z——z) . (13)
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In terms of the X and P minimum-uncertainty operators
[13], we find

oL+l (1+ H)

v 2v2
(14)
2(L_ — Ly) d

- 1
= —— L = = — 1,
P : i[szz—}-]

Therefore, the squeezed states for this system are formed
by the solution to the equation

d? 1 d
= |ly—=—+ (= +2vBy | —
0 P@2+<2+V Ody
1 v? vC
- I QB - 88 1
+4<y ” + 1/) 5 }d) (15)

where we have changed variables to y = vz2. The
squeezed state solutions to this equation are

thas = N exp[—y(vB + 7)][y**?]
w((530+3)) b))

(16)
where ®(a, b; c) is the conﬁuent hypergeometric function

o gbgncn” y= [v2B2 _ L and A(A+1) = v2. Inthe

limit where B — 1/2v, these become the coherent states
given in Ref. [13],

9u1/2¢—vR(C) /2
| ety

Ves = [ Ing12(v|C))

(17)

where I is the modified Bessel function.

Ezample IIL—We now consider a symmetry system
which does not have as its origin a Hamiltonian system.
We consider the su(1,1) symmetry of Eqs. (3) and (4).
Our ladder-operator squeezed states are thus the solu-
tions to

(7)== (5

where the analog of B is s and the role of C is taken by
B2. Using the differential representations of the ladder
operators, Eq. (18) can be written in the form

S) aTaT] wss = ,621/).937 (18)

2
[dd 5 + 2ys;;—i— +y?+ (s — 2ﬁ2)] 1ss = 0. (19)

Observe that the ladder operators raise and lower the
number states by two units. Therefore, there will be two
solutions to this equation, one containing only even num-
ber states and one containing only odd number states.
We will designate these as ¥gss and 1¥oss. These solu-

tions are

YEss = Ng exp [___y2(s +Vs? — 1)]

(o] ).
Wou = No yexp [~ (s + \/'s'T—_l)]
x¢<[3 2\/522_] =y 1) (21)

In the limit s — 1, these become the even and odd co-
herent states:

__ﬁz 11/2
e 1
VEes = [m‘l—a"; exp [‘51/2] cosh(\/iﬁy),
(22)
P8’ 172 1
’d)ocs = [m exp I:—Ey2jl smh(\/iﬁy)

(23)

Using generating formulas, these can be written in the
number state basis as

YEes = [cosh |67/ Z

|2n), (24)

oV (2n)!

’(/)Ocs [Slnh |B|2] 1/2 Z

n=0 V

Up to the normalization, these are the “even and odd
coherent states” previously found in Ref. [15]. Although
this system did not come from a Hamiltonian, one could
have used a minimum-uncertainty principle to obtain
the same states by starting with the commutation re-
lation [Ky,K_] = —2K,. However, one does not ob-
tain the same coherent states from the displacement-
operator method. Those coherent states, defined by
S(2)|0), are the squeezed-vacuum Gaussian of Eq. (11)
with o = po = 0.

Comment I—The above discussion brings us to the
displacement-operator method. Although it is the natu-
ral method for defining coherent states for Lie algebras,
there is as yet no well-known general extension of this
method to define general displacement-operator squeezed
states. This has been touched upon in discussions [16]
about higher-order generalizations of the “squeeze oper-
ator,” S(z). In particular, although harmonic-oscillator-
like systems admit squeeze operators (or Bogoliubov
transformations) connecting the displacement-operator
and ladder-operator methods [17,18], the appropriate

|2n +1).  (25)
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generalization of these squeeze operators has not been
found. Therefore, for now, the ladder-operator method
is generally connected only to the minimum-uncertainty
method.

Comment II.—In this vein, for finite-dimensional rep-
resentations, such as for angular momentum coherent
states, the ladder-operator method does not allow a so-
lution for coherent states, although the displacement-
operator method does [17]. Contrariwise, for squeezed
states, we observe that the opposite is true.

Comment III.—The above three examples have all
been cases where A_ = (A+)T. Sometimes that is not the
case, as in certain potential systems whose eigenenergies
are not equally spaced [12,13]. Then, as in Eq. (13), one
should use the operator form for “n”: A, — Ay, to
connect to the minimum-uncertainty method. In these
cases, the ladder-operator coherent and squeezed states
can be different from, though related to, their minimum-
uncertainty counterparts.

An application of these ideas to Rydberg wave packets
will appear elsewhere [19]. It is observed that, in general,
these packets are squeezed states.
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