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We propose a ladder-operator method for obtaining the squeezed states of general symmetry
systems. It is a generalization of the annihilation-operator technique for obtaining the coherent states
of symmetry systems. We connect this method with the minimum-uncertainty method for obtaining
the squeezed and coherent states of general potential systems, and comment on the distinctions
between these two methods and the displacement-operator method.

PACS numbers: 03.65.—w, 02.20.—a, 42.50.—p

Coherent states are important in many fields of the-
oretical and experimental physics [1,2]. Similarly, the
generalization of coherent states, squeezed states, has be-
come of more and more interest in recent times [3,4 . This
is especially true in the fields of quantum optics 5] and
gravitational wave detection [6].

However, one limitation is that, with the exception we
describe below, essentially all work on squeezed states
has concentrated on the harmonic oscillator system. In
this Letter we describe a generalization of squeezed states
to arbitrary symmetry systems, and its relationship to
squeezed states obtained for general potentials.

We begin by reviewing coherent states and squeezed
states.

(1) Displacement operator method-. —For the harmonic
oscillator, coherent states are described by the unitary
displacement operator acting on the ground state [7,8]:

D(n) IO) = exp[nat —n'a] IO)

=exp --I~l' ). In) =— I~&
n

The generalization of this method to arbitrary Lie groups
has a long history [1,2,7,9]. One simply applies the dis-
placement operator, which is the unitary exponentiation
of the factor algebra, onto an extremal state.

As to squeezed states, this method has basically only
been applied to harmonic oscillatorlike systems [3,4].

One applies the SU(1,1) displacement operator onto the
coherent state,

D(n)S(z)IO) = I(a, z)), S(z) = exp[zK+ —z*K ],

(2)

where K+, K, and Kp form an su(l, l) algebra among
themselves:

K+ ——z~atat, K = 2aa, Kp = z(ata+ 2),

[Kp, K~] = +Kg, [K+, K ] = —2Kp. (4)

The ordering of DS vs SD in Eq. (2) is unitarily equiv-
alent, amounting to a change of parameters. (Supersym-
metric extensions of the above exist [10].)

(2) Ladder (annihilation--) operator method. —For the
harmonic oscillator, the coherent states are the eigen-
states of the destruction operator:

ao. =ao. . (5)

This follows from Eq. (1), since 0 = D(a)aIO) = (a-
n)Ia). These states are the same as the displacernent-
operator coherent states. The generalization to arbitrary
Lie groups is straightforward, and has also been widely
studied [1,2).

(9) Minimum-uncertainty method. —This method,
which intuitively harks back to Schrodinger's discovery
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of the coherent states [ll], has been applied to gen-
eral Hamiltonian potential systems, to obtain both gen-
eralized coherent states and generalized squeezed states
[12,13]. One starts with the classical problem and trans-
forms it into the "natural classical variables, " X, and P„
which vary as the sin and the cos of the classical ut. The
Hamiltonian is therefore of the form P, + X, . One then
takes these natural classical variables and transforms
them into "natural quantum operators. " Since these are
quantum operators, they have a commutation relation
and uncertainty relation:

[X,P] = iG, (AX) (AP) & 4(G) .

The states that minimize this uncertainty relation are
given by the solutions to the equation

YQ„—:(X+ P
~ @„i(G)

that is done, the ladder-operator method can be applied
to general symmetry systems, independent of whether
they come from a Hamiltonian system in the manner
of the minimum-uncertainty method above. Such is our
third example.

Excmpte I.—First we reexamine the harmonic oscil-
lator, starting from the minimum-uncertainty method.
Here X and P are obviously x and p. (We use dirnen-
sionless units. ) Then we have

Y =x+s
d2:'

where we have presciently labeled B as s . (For the limit
to coherent states, it turns out that B = 1.)

Now writing x and p in terms of creation and annihi-
lation operators, x = (a+ at)/~2, p = (a —at)/i~2, we
G.nd

t'1+ s'
t K1 —s'

v2 a
I + at

~ Q„(s,xp+ is pp)

Note that of the four parameters (X), (P), (P~), and

(G), only three are independent because they satisfy the
equality in the uncertainty relation. Therefore,

(X+ iBP) Q„=Cg„, B=, G = (X) + iB(P).LX
AP'

Here B is real and G is complex. These states, Q» (B, G),
are the minimum-uncertainty states for general poten-
tials [12,13]. Using later parlance, they are the squeezed
states for general potentials [4]. Then B can be ad-
justed to Bp so that the ground eigenstate of the po-
tential is a member of the set. Then these restricted
states, Q„(B= Bp, G) = Q„(Bp, G), are the minimum-
uncertainty coherent states for general potentials.

It can be intuitively understood that g„(B,C) and
(Bp, G) are the squeezed and coherent states by recall-

ing the situation for the harmonic oscillator. The coher-
ent states are the displaced ground state. The squeezed
states are Gaussians that have di8'erent widths than that
of the ground state Gaussian, which are then displaced.¹uj ladder operator method-for general squeezed
states. —General annihilation-operator (or ladder-
operator) coherent states are the eigenstates of the lower-
ing operator (given a lowest extremal state). We now pro-
pose a generalization to squeezed states, including those
for arbitrary symmetry systems: The general ladder-
operator squeezed states are the eigenstates of a linear
combination of the lowering and raising operators. (See
comment III, below, concerning previous special cases. )

We will show how the minimum-uncertainty method
for obtaining generalized squeezed states can be used
as an intuitive tool to aid in understanding the ladder-
operator method for obtaining generalized squeezed
states. We will do this with two specific examples. Once

= [xp + is pp]q (s, xp + is pp). (10)

Therefore, the squeezed states are eigenstates of a linear
combination of the annihilation and creation operators.
Specifically, these states are

(x —xp)~ + iPp2s

1 d 1 d 1 v 2 v
Ly = — ~ —z—g —+ —z

4v dz2 2 dz 4 4 4z2' (12)

H v
Lp ———+-

4v 2' H= — +v ——z (13)

The relationships to the displacement-operator parame-
ters are z = re'~, r = lns, ~27k(o.) = xp, and ~2Z'(n) =
pp. (The phase, P, is an initial time displacement. )

We note, with hindsight, that the success of this
method will not be totally surprising. In many exactly
solvable potential systems, the natural quantum opera-
tors of the minimum-uncertainty method were found to
be Hermitian combinations of the n-dependent raising
and lowering operators [12,13]. Here, however, one must
generalize to full operators: n ~ n(H). Furthermore,
in other harmonic-oscillator-like systems, with a Bogoli-
ubov transformation, this method applies. (See below. )

Exampte II.—We demonstrate this method with the
symmetry of the harmonic oscillator with centripetal bar-
rier. Previously, the coherent states for this particu-
lar example were found with the minimum-uncertainty
method, but not the squeezed states [13]. Therefore, it is
an ideal system since, at the end, we can connect to the
coherent states obtained from the minimum-uncertainty
method.

This system contains an su(l, l) algebra [14]. Its ele-
ments are
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L, +I, = z' — 1+
2

2(1 —I+)
(14)

In terms of the X and P minimum-uncertainty operators
[13], we find

tions are

Q@» ——N~ exp
—y

2
(s+ ps~ —1)

1 P~ 1xc —+,—;y Qs —1 i, (20)4 2v'sz —1
' 2'

Therefore, the squeezed states for this system are formed
by the solution to the equation

d~ 1 )d0= y + —+2vBy ~—
dy 2 ) dy

vc+—
i y ——+2Bv i—4( y ) (15)

where we have changed variables to y = vz2. The
squeezed state solutions to this equation are

go» ——No y exp — (s + gs~ —1)
2

f3 P' 3xci —+,—;yes~—li.
& 4 2v's~ —1

' 2 ) (21)

0z.s =
p2

~i/~ cosh i@i~

- l/2

exp ——y cosh(v 2Py),
1 2

(22)

In the limit s —+ 1, these become the even and odd co-
herent states:

g„=N exp[ —y(vB i p)][y~+&]

i vC lt' 3i 3xi' + —
i A+ —i, A+ —;2py i,i 4p 2i 2) ' 2 )

4o.s =
- l/2e-t'

vr'~~ sinh iPi~
exp ——y sinh(v 2Py).

12
2

(23)

where C (a, 6; c) is the confiuent hypergeometric function

Q„o i(q)~"'„, , p = v~Bz —4, and A(%+1) = v~. In the

limit where B —+ 1/2v, these become the coherent states
given in Ref. [13],

2n
= [cosh [Pi ]

'~~ ) i2n),
0 Q(2n)!

(24)

Using generating formulas, these can be written in the
number state basis as

CS

~/2 -vx(C)- '/'2V'e ' '
„/2 l/4 S/2

(„i~i)
" y I g K2v&y) 2n+l

= [sinh ~Pi ]
~ ) i2n+ 1). (25)

(2n+ 1)!

where I is the modified Bessel function.
Excite III.—We now consider a symmetry system

which does not have as its origin a Hamiltonian system.
We consider the su(l, l) symmetry of Eqs. (3) and (4).
Our ladder-operator squeezed states are thus the solu-
tions to

1 + si (I —s&
I
«+

I) & 2 )
where the analog of B is s and the role of C is taken by
P . Using the differential representations of the ladder
operators, Eq. (18) can be written in the form

+2ys —+y +(s —2P ) $„=0.
dg dg

Observe that the ladder operators raise and lower the
number states by two units. Therefore, there will be two
solutions to this equation, one containing only even num-
ber states and one containing only odd number states.
We will designate these as g~„and Qo„. These solu-

Up to the normalization, these are the "even and odd
coherent states" previously found in Ref. [15]. Although
this system did not come from a Hamiltonian, one could
have used a minimum-uncertainty principle to obtain
the same states by starting with the commutation re-
lation [K+, K ]

= —2K0. However, one does not ob-
tain the same coherent states from the displacement-
operator method. Those coherent states, defined by
S(z)~0), are the squeezed-vacuum Gaussian of Eq. (11)
with xp = pp = 0.

Comment I.—The above discussion brings us to the
displacement-operator method. Although it is the natu-
ral method for defining coherent states for Lie algebras,
there is as yet no well-known general extension of this
method to define general displacement-operator squeezed
states. This has been touched upon in discussions [16]
about higher-order generalizations of the "squeeze oper-
ator, " S(z). In particular, although harmonic-oscillator-
like systems admit squeeze operators (or Bogoliubov
transformations) connecting the displacement-operator
and ladder-operator methods [17,18], the appropriate
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generalization of these squeeze operators has not been
found. Therefore, for now, the ladder-operator method
is generally connected only to the minimum-uncertainty
method.

Comment II.—In this vein, for finite-dimensional rep-
resentations, such as for angular momentum coherent
states, the ladder-operator method does not allow a so-
lution for coherent states, although the displacement-
operator method does [17]. Contrariwise, for squeezed
states, we observe that the opposite is true.

Comment III.—The above three examples have all

been cases where A = (A+) . Sometimes that is not the
case, as in certain potential systems whose eigenenergies
are not equally spaced [12,13]. Then, as in Eq. (13), one
should use the operator form for "n": A„—+ A„~H~, to
connect to the minimum-uncertainty method. In these
cases, the ladder-operator coherent and squeezed states
can be different from, though related to, their minimum-
uncertainty counterparts.

An application of these ideas to Rydberg wave packets
will appear elsewhere [19]. It is observed that, in general,
these packets are squeezed states.
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