
VOLUME 71, NUMBER 17 PH YSICAL REVIEW LETTERS 25 OCTOBER 1993

New Noise Exponents in Random Conductor-Superconductor and Conductor-Insulator Mixtures
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Time dependent fluctuations of the fraction of normal-conducting part in random resistor-
superconductor (RS) and resistor-insulator (RI) networks lead to a novel eff'ect close to the percolation
threshold. The normalized noise scales as a function of the resistance with a characteristic exponent A. .
The value of A, is difterent from the value found in classical percolation models but can be related to the
resistivity exponent s (t) of the RS (RI) transition by a simple scaling relation: k =2/s (2/t). Results of
recent experiments on high-T, superconducting thin films are interpreted in terms of this new effect and
a crossover from three to two dimensional percolation behavior is found.

PACS numbers: 74.40.+k, 64.60.Ak, 72.70.+m, 74.76.8z

The electrical conductance and conductance noise in

random resistor-superconductor (RS) and resistor-insu-
lator (RI) composites have been extensively studied dur-

ing the last decade [1-10]. Such studies are interesting
not only for fundamental reasons but also for technologi-
cal applications. An important example of such materials
is high-T, superconductors, which show a random RS
composite nature in the superconducting transition region
(e.g. , [11-14]). Another example is thick film resistors
[15-19], which are widely used in electronics. Such
resistors consist of metal particles embedded in a glass
medium and behave as random RI composites [19].

Random resistor networks are applied in modeling the
physical behavior of granular superconductors and
metal-insulator composites [1-10]. One can start from a
spatially homogeneous lattice of resistors representing a
homogeneous material. Introducing short circuits paral-
lel to some resistor elements, selected at random, yields a
network representing a random RS mixture. Cutting out
some resistors, selected at random, yields a network rep-
resenting a random RI mixture.

The physics of random resistor networks is governed by
the characteristic cluster size g of the superconducting
phase in RS composites and of the conducting phase in

RI composites. In the percolation region, these length
scales can be expressed as a function of the volume frac-

tion p, of resistors (0 ~ p„~ 1),

(1a)

and

(1b)

where p,', =1 —p„, p„ is the percolation threshold of the
superconductor component, p„ is the percolation thresh-
old of the conducting component, and v is a critical ex-
ponent (v= 3 in 2D; v=0.89+ 0.01 in 3D). This criti-
cal behavior leads to the following scaling behavior of the
macroscopic resistance R:

and

&-~(p. —p'. )' (p. &p'. ) (2a)

&ri ~ (pr per) (pr & per) ~ (2b)

where R„ is the resistance of the RS composite and R„. is
the resistance of the RI composite. Values of the univer-
sal exponents s and t [1-10]are shown in Table I.

Studies of noise in classical percolation models are
based on the assumptions that the resistor elements in the
network Auctuate independently of each other and that
the Auctuation is small in comparison to the mean value
of the resistance,

TABLE I. Scaling exponents of the resistance and the normalized noise in random resistor
networks. The resistance of the normal-conducting elements fluctuates independently; i.e., the
number of noise sources is given by the number of resistors.

RS composite (p, & p, )

, S,.(f)R„~(p, —p, )',
2

~ R„"
R„

RI composite (p, & p, )

, S„(f)R„~(p, —p, ) ', "' ~R„"

1D
2D
3D

1

1.297 ~ 0.07
0.73 ~ 0.011

1

0.86 ~ 0.02
0.9+ 0.32

1.297 ~ 0.07
1.96+ 0. 1

0.86 ~ 0.02
0.80+ 0. 1
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(~rk(r)~i'j(r)) ~k, j&k &k ((ik (3)

where rk is the mean resistance, Ark (r ) the instantaneous
noise amplitude, and vI, the mean square noise of the kth
resistor element. One most important result is that in the
percolation region, the normalized mean-square fluctua-
tion, and consequently the normalized power density
spectrum of the noise AR(t) of the macroscopic resis-
tance R scale with the resistance as

S„(f) (~R„', (r ) &

oc cxR, "
R„ R„',
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where hR„, (t) and AR„;(t) are the noises of R„, and R„;,
respectively, and S„,(f) and S„;(f) are the corresponding
power density spectra at a fixed frequency f. Values for
the noise exponents l„, and i„; [1] are given in Table I.

It is important to note that in order to obtain the scal-
ing behavior of the normalized noise as given by Eq. (4),
the p„dependence of the noise Ark(r) has to be negligi-
ble,

Sk[f,p„(l )] =Sk[f,p„(2)], (5)

where Sk(f,p, ) is the power density spectrum of Ark(t),
and p„(1) and p„(2) are two arbitrary values of p, in the
percolation region.

In high-T, superconductors, the quantity p, is con-
trolled by the sample temperature. In the low tempera-
ture part of the superconducting transition, the material
can be described as a network of Josephson junctions
formed by the connections between neighboring supercon-
ducting grains. At a given temperature T, the critical
current I, ' (T) of the ith junction can be written as [12]

I (i)(T) 2e P (i)(T) (6)

where F ' (T) is the Josephson coupling energy of this
particular junction. If the sample is fed by a current I,
two situations might occur: either the local current I '

which IIows through the ith junction is less than I, ' (T)
and the junction is superconducting, or I ' is larger than
I, ' (T) and the junction is resistive. Since all high-T,
materials will contain some defects (at least on the scale
of the superconducting coherence length), it seems
reasonable to assume that a more or less wide distribution
of junction critical currents will exist in these materials.
As a consequence, for a given applied current, the transi-
tion temperatures of the junctions will be distributed ac-
cording to a function g (T,;I). The relative number
p„(T) of normal-conducting junctions at the temperature
T is determined by g(T, ;I) as follows:

T
p„(T) =„g(T';I )d T'.
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FIG. 1. Normalized noise versus resistance in high-quality
high-T, superconducting thin films in the percolation region. In
situ I: sample fabricated by coevaporation. In situ 2: sample
fabricated by dc magnetron sputtering. The solid lines corre-
spond to slopes predicted by scaling theory.

In most cases, the actual distribution g(T;I) is un-

known, which implies that Eq. (2a) cannot be directly
tested by conductance measurements. This fact em-
phasizes the importance of Eq. (4a) since in this case all

quantities can be measured, which makes it possible to
verify the existence of percolation as well as to study in

more detail the behavior of the network close to percola-
tion. This requires measurements of the temperature
dependencies of the resistance R and its noise S(f).

The quality of high-T, superconducting thin films has
improved significantly during the last couple of years.
This development of fabrication techniques has led to a
decrease of the strength of the microscopic noise, i.e., a
reduction of k; in Eq. (3). As a consequence, the nor-
malized noise of these materials has decreased by 5-8 or-
ders in magnitude [20] which in turn has made it possible
to distinguish other noise sources than the source con-
sidered in classical percolation noise models.

Recent experimental results [20,21] of conductance
noise in high-quality high-T, superconducting thin films
have shown that the noise exponent can be much larger
than the scaling exponents predicted by classical percola-
tion models [/„, in Eq. (4a)]. The new noise exponent,
which in the following will be called X„„takes the follow-
ing experimental values (see Fig. 1): In 3D A, „,= 2.7 (in-
stead of the classical l„=0.9~0.3), while in 2D k„,= 1.5 (instead of the classical l„, =0.86+' 0.02).

In this Letter, we give a possible explanation for this
new eAect. It will be shown that time-dependent fluctua-
tions of the intergrain Josephson coupling energy in RS
mixtures can lead to a new class of universal noise ex-
ponents (this model was first described in [20]). The cor-
responding eA'ect in RI mixtures is also predicted and the
relevant noise exponents are derived.

We will start by considering the Josephson junctions in

the network. As the system is in the percolation region,
Eq. (2a) holds in the following form:

R„,[p, (T)] ~ [p, (T) —p,', ]',
where R„,[p, (T)] is the mean value of the macroscopic
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resistance at the temperature T. It will be assumed that
a time-dependent perturbation of the Josephson coupling
energy F~ exists, sufficiently strong to induce a random
switching (on-ofl') of some of the junctions. The random
switching of junctions represents a spontaneous Auctua-
tion (noise) Ap, (t) of p„(T), which will induce a noise
AR„, (T;t ) in the macroscopic resistance,

ee [p„(T)—p,', ]' 'ap„(t) =R„', 't'Ap, (t) . (9)

The normalization noise po~er can thus be expressed as

(10)

Correspondingly, the normalized noise spectrum is

~ R„'(T)S (f,T),R'(T)
where Sz(f, T) is the noise spectrum of hp, (t)

In the case when the temperature dependence of the p
noise is negligible (or, is at least weak in comparison to
the temperature dependence of R t') we have

(12)

In this case, the normalized noise can still be expressed as
a power function of the resistance. However, the value of
the exponent diAers significantly from the value of the ex-
ponent l„, of the classical percolation problem (see Table
II). To obtain the simple scaling law given in Eq. (12), it

is essential that the temperature dependence of S~(f, T)
is weak. This condition is similar to the condition given

by Eq. (5) for the classical percolation noise problem and
has important implications for the possible microscopic
mechanisms of this new noise eAect.

According to recent experimental studies [20,21] on

YBapCu307 high-T, superconducting thin films obtained

by various fabrication methods, high quality films display
the scaling behavior predicted by Eq. (12). As can be
seen in Fig. 1, the extracted values for noise exponents in

films obtained by the so-called in situ fabrication method

are in remarkable agreement with the predicted
values. In sample "in situ i" (fabricated by coevapora-
tion) the scaling behavior can be followed over seven de-
cades in normalized noise spectral density which gives
strong evidence for the existence of percolation in this
sample as well as strong support for the proposed noise
model. The dimensional crossover [from X„,= 2.8 to
A,„,= 1.5 around R„,(T) = 20] indicates that the per-
colation length g reaches the smallest linear size (the
sample thickness —0.08 pm) of the sample. Sample "in
situ 2" (fabricated by dc magnetron sputtering) shows
the 2D value of X„, (= 1.5) in the whole of the percola-
tion region which is experimentally accessible. This 2D
behavior is in accordance with scanning electron micros-
copy characterization of the film, which shows that the
grain size of this film is of the same order of magnitude
as the sample thickness (—0. 1 pm).

The temperature dependence of the normalized noise
has been compared with the square of the normalized
temperature derivative of the resistance in order to check
the possibility of temperature fluctuations [22] being the
origin of the hp„(t ) fluctuations. This experimental
check gave a negative result; temperature Auctuations can
be excluded as the origin of the hp„(t ) fluctuations [20].

In the last part of this Letter, the corresponding Ap, (t)
noise in RI mixtures will be considered. Starting from
Eq. (2b) and the assumption of a noise Ap, in p, lead to
the same sort of equations as for the RS mixtures [Eqs.
(8-12)] with the final result

The predicted values of the X„; exponents are shown in

Table II. The existence of Ap, (t) noise in RI composites
has not been verified by experiments. This might be due
to the fact that in 3D systems the classical and new ex-
ponents are rather similar. In 2D RI systems, however,
the existence of noise in Ap, (t ) should be clearly reflected
in experiments.

In conclusion, a noise of the quantity p, in percolating
RS (RI) composites can lead to a new class of universal
noise exponents. The value of the new noise exponent k is
diA'erent from the value found in classical percolation

TABLE II. Comparison of classical (i) and new (X) noise exponents.

RS composite (p, & p, ) RI composite (p, & p, )

S„(f) I„, S„(f)— S„(f) I„S„(f)-.

1D
2D
3D

1

0.86 ~ 0.02
0.9+ 0.32

X- =2/s

2
1.54 ~ 0.09
2.74+ 0.04

0.86 ~ 0.02
0.80 ~ 0. 1

X„=2/t

1.54 ~ 0.09
1.02+ 0.05
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models but can be related to the resistivity exponent s (t)
of the RS (RI) transition by a simple scaling relation:
k =2/s (2/t). Recent experimental results on (high-
quality) high-T, superconducting thin films originating
from different fabrication methods are interpreted in
terms of this new effect. In Table II, the theoretical
values of the "old" and "new" noise exponents in RS as
well as RI mixtures are shown for comparison.
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