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Quasiparticle Theory versus Density-Functional Theory at a Metal Surface
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We report a first-principles comparison between quasiparticle (QP) theory and density-functional
theory (DFT) at a jellium surface. Once long-range Coulomb correlations —which are outside the
local-density approximation —are incorporated into DFT through the exchange-correlation potential, the
same yields wave functions and energy eigenvalues which are excellent approximations to their QP
image-state counterparts. By contrast, our results for the electron self-energy near the surface do not
support the use of local potentials for the description of excited-state damping.

PACS numbers: 73.20.—r, 71.10.+x

Density-functional theory (DFT) provides a universal
scheme for the treatment of Coulomb correlations in

solids via the introduction of an exchange and correlation
(XC) energy functional Exc[n] and associated XC po-
tential Vxc(x) [1,2]. Now as originally formulated, and
commonly implemented, DFT is restricted to the ground
state of a many-electron system [1]. Thus, in principle,
spectroscopic investigations of solids which, by definition,
probe electron dynamics, are outside the realm of the
theory.

Diagrammatic perturbation theory provides an alterna-
tive approach to the many-body problem which is free
from this limitation [31. However, its implementation is

substantially more involved than that of DFT, since it re-
quires an explicit self-consistent treatment of the dynam-
ics and nonlocality of the XC process embodied in the
electron self-energy Zxc(x, x'~E). By contrast, in the nu-

merical implementation of DFT the intricacy of the XC
process is largely bypassed (the same is an issue when

formulating a theory of the functional Exc[n]), and one
rigorously deals with a local energy-independent poten-
tial.

As a consequence, DFT eigenvalues and wave functions
are used in many cases in the interpretation of experi-
ments such as photoemission and inverse photoemission—often with considerable success [4]. It is clearly an im-

portant proposition to seek to elucidate the reasons for
this a posteriori success of DFT, to ascertain the situa-
tions where the method fails (e.g., band gaps), and to de-

velop the many-body perturbation theory for the evalua-
tion of observables, such as excited-state lifetimes, which
are inherently outside DFT.

In this Letter we compare both approaches to the
many-body problem for a metal surface, modeled by jelli-
um. The emphasis is placed on a particularly "extreme"

situation; i.e., we focus on states which are bound by the
image tail of the surface barrier —the image states [5-8].
The physics of these states, whose description in DFT re-

quires going beyond the local-density approximation
(LDA) [1],is governed by the dual features of long-range
Coulomb correlations and strong charge localization at
the surface —thus the image states are direct probes of
many-body eff'ects at the surface. Our key conclusion is
that upon inclusion of long-range correlations the DFT
eigenfunctions are extremely good approximations to
their quasiparticle (QP) counterparts [9]; furthermore,
the QP energy shifts are found to be small. This success
of DFT for our prototype inhomogeneous system is inter-
preted with the aid of an effective local QP potential
which we define. Our results have important practical
consequences for the implementation of many-body per-
turbation theory at a surface.

Since the above comparison is in essence one between

&xc(x,x'~E) and Vxc(x), we also touch on a related and

rather general issue, namely, whether the physics of the
self-energy near the surface can be simulated by a local
potential —a question of relevance in, e.g. , electron-
surface scattering studies [10]. We find that the damping
of the QP states necessitates a nonlocal description; i.e.,
the inherent nonlocality and energy dependence of the
imaginary part of the electron self-energy at the surface
precludes a meaningful definition of a complex local opti-
cal potential.

We discuss the electron self-energy Zxc(x, x'~E) first.
Since we are particularly interested in image states, what
is essential is for Zxc to incorporate long-range Coulomb
correlations. The GW approximation [3] fulfills this re-

quirement, and has proved successful in recent self-

energy studies in solids [11-14];thus we adopt it in the
present work (effects beyond the GW are expected to be
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important in strongly correlated Hubbard-like systems):

&xc(x,x') IE) = dE'e' "g(x,x'IE+E')
2m "

x IV(x, x'I E') (1)
where g(x, x'IE) is the QP Green's function and
IV(x, x'IE) is the dynamically screened electron-electron

interaction, W = v+ AT v [3,15], where v is the bare
Coulomb interaction and gT is the (time-ordered) density
response function [16].

The formal basis of the GR' scheme is completed by
the Dyson equation relating g and Zxc. Equivalently, the
spectrum of QP excitations can be determined by the
self-consistent solution of the equation [3]

h.

2m
+ VFs(x) +Qp(x) + d x'&xc(x, x IEQP)+QP(x ) EQP pQP(x)J (2)

where VEs(x) is the electrostatic potential and we have
denoted by Egp a (complex) QP energy and by +qp(x)
the corresponding QP amplitude (from whose argument
we have suppressed the energy eigenvalue to which it cor-
responds).

We have solved Eq. (2) for a jellium slab [17]. Our
solution involves several levels of self-consistency. The
QP eigenvalue Egp results from an iterative solution of
Eq. (2) starting from an appropriate DFT eigenvalue. In
this procedure the dynamical screening process is ac-
counted for self-consistently through the solution of the
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FIG. 1. The electron self-energy Zxz at a jellium surface

with r, =2.07 for q[] =0.2kF and E =0.3EF, values which corre-
spond to the image state shown in Fig. 2 (the energy is mea-
sured from the Fermi level). (a) The electron is at the jellium
edge. (b) The electron is one Fermi wavelength into the vacu-
Um.
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integral equation gT =/+/AT [3,18], where g is the ir-
reducible polarizability. We invoke the random-phase
approximation, in which g is taken to be the density-
response function for noninteracting electrons, g . The
self-consistent electron density profile at the surface is
used at all stages. The only simplification made (and the
same is justified a posteriori by the results discussed
below) is the use in Eq. (1) of the DFT Green's function

go (computed from DFT eigenvalues and eigenfunctions)
in place of the QP Green's function g [11,12].

In Fig. 1 we show the two-dimensional Fourier trans-
form of the self-energy, Zxc(qIIE lz, z') (z being the coor-
dinate normal to the surface), for values of the wave vec-
tor (parallel to the surface) qII and energy E which corre-
spond to the self-consistent solution of Eq. (2) for the QP
image state to be considered below [17]. In Fig. 1(a) the
electron is at the jellium edge, z'=0. In this case the
nonlocality of both ReZxc and ImXXC, measured by the
half-width of the cusp for z =z', is rather modest—a small fraction of a Fermi wavelength.

As the electron leaves the surface the amplitude of the
cusp in ReZxc can be shown to decay as z ' [19,20]; i.e.,

it behaves like a classical image potential. A new and
dramatic feature of the nonlocality of the self-energy at
the surface is illustrated in Fig. 1(b): The maximum in

ImZxc occurs quite removed from the electron position
z'; i.e., the cusp in ImZxc stays at the surface as the elec-
tron moves into the vacuum.

We emphasize that the range of the nonlocality of the
cusp of ImZ~c in the vacuum is comparable with the
length over which the electron density decays to zero
outside the surface. Thus, a rigorous description of elec-
tron dynamics at a surface requires that Coulomb corre-
lation eff'ects be treated —as we have done —on the same
footing with the strong inhomogeneity of the electron
density profile at the surface.

Next we compare the predictions of QP theory and
DFT for physically significant states, such as image
states. The counterpart of Eq. (2) in DFT is the Kohn-
Sham (KS) equation [1],

Q
2

2m
V + VEs(x)+ Vxc(x) ttI„(x)=E,ItI,(x), (3)

which is solved self-consistently with the electron density.
Note that if it were possible to equate the nonlocal self-
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the potential for one energy would not yield the potential
for the other one. Thus, ImU, tr(z) depends in a nontrivi-
al way on the state for which it is calculated (and thus on
energy as well) —in other words, in order to construct
ImU, ff(z) one would have to solve the QP problem erst.
Clearly this feature of QP propagation inhibits the devel-
opment of a meaningful prescription for creating local
complex potentials out of the more fundamental QP pic-
ture.

In addition, unlike the case of ReU, tr(z) (which, as
shown above, agrees well with Vxc(z), a local energy-
dependent potential), ImU, tr(z) is singular near a node of
qtgp(z) due to the nonlocality (asymmetry) of ImZxc
about z=z'. The divergence of ImU, tr(z) at the first
node of +gp(z) at the surface can be traced to the impact
in Eq. (4) of the extreme nonlocality of ImXxc in the vac-
uum (the explicit energy dependence of ImZxc plays a
smaller role).

We note that since our DFT and QP calculations were
carried out to the same degree of approximation in the
electron-electron interaction —built into the theory
through the G8' self-energy —it seems plausible that our
results are intrinsic to the many-body problem. Thus we
expect our conclusions to be valid for more elaborate
self-energies.

In summary, we have found that upon going beyond
LDA by incorporating long-range correlations into
Vxc(n), DFT gives an accurate approximation to the QP
wave functions for our model strongly inhomogeneous
system. Since a similar result has been reported for a
very different electronic environment [9]—LDA wave
functions at the gap in a bulk semiconductor —this
feature of the DFT wave functions may be generic. In
addition, we have found that the quasiparticle energy
shifts for the image states are small. Both conclusions,
which are of obvious impact in simplifying the implemen-
tation of diagrammatic perturbation theory at surfaces,
are nontrivial, as "nonuniversal" (short-range) features
of the surface barrier can lead to binding energy changes
of up to 0.2 eV for n=1 image states [7]. Finally, we
have shown that the large nonlocality of the imaginary
part of the electron self-energy outside the surface cannot
be accounted for in a meaningful way by a complex local
potential.
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