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We investigate equilibrium electron currents and magnetization in an ideal two-dimensional disk of
radius R placed in a strong magnetic field H. The most striking results emerge when the conditions for
the existence of edge and bulk states are met, namely R>>ay =(hc/eH)2. When the Fermi energy is
locked on a Landau level, the current as a function of electron density is quantized in units of
(e/h) hwc/2, where . is the cyclotron frequency. We argue that this effect survives against weak disor-
der. It is also shown that the persistent current has an approximately periodic dependence on 1/H.

PACS numbers: 73.50.Jt, 72.10.Bg, 73.20.Dx

Persistent current [1] is an equilibrium property of an
electronic system having the topology of a closed loop, ex-
pressing its response to an applied magnetic flux passing
through the hole. The simplest example of such a system
is an electron gas confined within a one-dimensional ring
threaded by a flux. In the present Letter, we raise the
issue of persistent currents in simply connected two-
dimensional systems subject to a strong magnetic field.
The motivation is related to the question of what happens
if there are edge states traveling along one direction only,
as the sample has only one boundary. We would espe-
cially like to find out whether the current is a monotonic
function of electron density. As we shall see, the answer
to this question is positive but only locally. In particular,
novel quantization takes place. It is worth pointing out
here that for systems with many transverse channels, we
cannot expect the magnetization to be simply related to
the persistent current. In addition, at strong magnetic
field, we shall see that bulk states do not contribute to the
current, but do so for the magnetization.

Unlike the concept of local current density, the defi-
nition of total current in a simply connected system re-
quires some clarification. As long as a system has a hole,
there is no ambiguity as to what is the relevant persistent
current. One way to define the current in a simply con-
nected system is then to start from a system with a hole
of radius p threaded by a flux @, and then let p— 0.
This procedure introduces the somewhat unrealistic con-
cept of flux line, but so long as ®#0, it forces the wave
function to_vanish at the point where the flux threads the
sample, and that makes the concept of flux line well
defined. Experimentally, however, we have a two-di-
mensional system in a perpendicular magnetic field
without an additional central flux. We can arrive at this
situation by letting &— 0 (after taking the limit p— 0).
Note that, due to the presence of the (constant) magnetic
field, the ground state is not Kramer degenerate [2]. Yet,
some subtle point remains open with this limiting pro-
cedure. It is best exemplified in the clean disk geometry
upon which we concentrate henceforth. The formalism
developed below is based on the independent particle ap-
proximation in which the effect of the electron-electron

interaction is neglected. The pertinent quantity is then
the total azimuthal current along a radial cross section
between r=0 and r=R (which is independent of angle
due to current conservation). Since there is a rotational
symmetry, the angular momentum m is a good quantum
number. The s state wave function does not vanish at the
origin if ®=0, and therefore, in that particular case, the
limiting procedure described above does not carry the
characteristics of a system with a hole. We shall return
to this point in connection with Eq. (4) below.

The total current is an integral of the current density
along a straight line stretched from the flux point to the
edge of the sample. It is determined by the energy spec-
trum, or, more precisely, through the dependence of the
ground state energy on the central flux ®. (We are in-
terested in the particular value ¢=0.) Before studying
the energy spectrum in a disk in a strong magnetic field
H, it is useful to familiarize oneself with that of an
infinite system. We use the symmetric gauge and adopt
units such that A =2m™* =1 where m* is the mass of an
electron. The scaled magnetic field is given by b=1/aj}
=eH/hc where ay is the magnetic length. The eigenval-
ues E,(m) depend on the radial quantum number n
(n=0,1,2,...) which denotes a Landau level, and the
angular momentum m (m=0,%1,%x2,...). They are
given by [3]

E,(m)=2[n++(m|—m+1)1b 1)

(note that in physical energy units b is equivalent to
hw./2). The corresponding wave functions are

Yom(r,0)=Cr Im| gimég, _b’z/zL,!”‘l(brz) " )

where C is a normalization constant, » and 6 are plane
polar coordinates, and L™ (x) is the Laguerre polynomi-
al. For a fixed n, all the energies with m = 0 are degen-
erate, forming the bulk states of the Landau level. In
particular, for n=0, the wave functions (2) for m=0
can be written in terms of the complex variable z =re’® as
Cz™e ~b121%2. On the other hand, for m <0, the energies
are not degenerate. In particular, for n=0, the pertinent
states correspond to the wave functions Cz*™e —blz1?2
One may regard the energies for negative values of m as
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belonging to higher Landau levels. Thus, for example, in
this construction Eo(—1)=E (0) =3b belong to the
second Landau level. Besides the fact that such a newly
defined Landau level contains functions with different
numbers of radial nodes, there is one other point to be no-
ticed. If we add a central flux of strength & the corre-
sponding energy eigenvalues are obtained from Eq. (1)
through the substitution m — m+¢ where ¢ =®/d; with
®o=hc/e being the magnetic flux quantum. We may
then speak of continuous energy curves, since, as ¢ is
varied continuously between O and 1, the energies
En(m;¢) slide along the curve 2[n+ % (|x| —x+1)1b.
This adiabatic change is subject to the condition
E,(m;p+1)=E,(m+1;¢), as is required by gauge in-
variance. Turning to our example above, the energy
E(0) will slide rightward to become E (1) =3b, namely,
it is not changed. On the other hand, the eigenvalue
Eo(—1) will slide right and downward to become
E¢(0) =b. We then conclude that the dependence of the
energies for m >0 on a central flux which is allowed to
vary adiabatically is different from those with m <O0.
Once we turn to a finite system, this has an important
consequence with respect to the persistent currents.

We now concentrate on the qualitative features of the
energy spectrum for a disk of finite radius R in a strong
magnetic field such that the condition R > ay holds. Fol-
lowing Halperin [4] we define, for m > 0, an m dependent
radial parameter r,, through

tbri=m—y¢. 3)

Then, if R —r, > ay, the energies E,(m;¢) are almost
identical to those for the infinite system [given by Eq.
(1) for ¢=0l], and the corresponding wave functions
¥,m(r,0) are localized in the radial coordinate near rp,.
If R—rp, <apy (or negative), the energies E,(m;¢) form
a sequence which increases monotonically with m, and
the corresponding eigenfunctions are edge states. The en-
ergies for m <0 are practically unaffected by the finite
size, and hence, they are also given to an excellent ap-
proximation by Eq. (1). In Fig. 1 we display the single-
particle spectrum for the disk in a strong magnetic field,
which is computed by integrations of the relevant
Schrodinger equation. The consequence of this structure
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of the spectrum to the behavior of the persistent currents
is rather peculiar, and consists of the central point of the
present work.

The technical details for obtaining the solutions are ex-
plained elsewhere [5]. The fact that the system has a
finite radius R introduces a new length unit into the prob-
lem in addition to the magnetic length ay =(hc/eH) .
Since we are going to study the current as a function of
electron density and as a function of the magnetic field, it
is useful to express energies E,(m;¢) and magnetic fields
b in terms of this unit (recall that A =2m™* =1 so that
both E and b have dimension of inverse length square).
Besides the eigenvalues E,(m;¢), the numerical pro-
cedure produces also the wave functions ¥,,(r,0)
=27) ~ 2y (r)e™™®, which vanish at r =R (hard wall
boundary conditions) and are normalized to unity on the
disk area with volume element »drd6. The contribution
of an occupied state at energy E,(m;¢) to the azimuthal
current between r =0 and =R can be evaluated directly
by integrating the corresponding current density. The re-
sult is

Inm =J;R|ul,,m(r)| 2 [2%——_—@ -—br]dr

=2y D=2 4 )

[the current in physical units is (e/h)(h2%/2m*)I,m).
Under certain conditions (see below) the current can also
be computed in terms of the Byers-Yang [6] relation,

_ OE,(m;¢) _ AE,(m;¢)
¢ om )

Notice, however, that this relation is derived only for sys-
tems with a hole. Following our discussion of the limiting
procedure it can be applied in simply connected systems
even at ¢ =0 provided m=0, since the corresponding
wave functions vanish at r=0. On the other hand, the
energy derivative is discontinuous at ¢ =0 for m =0, as
can easily be verified from a glance at Eq. (1) pertaining
to an infinite system. Similar behavior is anticipated for
our finite system as well. Thus, I,0(¢) does not have a
definite limit as ¢— 0. This is not surprising, since we
have already stressed that the case m =0 and ¢— O can-
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FIG. 1. Single particle spectrum of a clean
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disk of radius R =20 x, placed in a magnetic
field =1 (in units of x72). Energies
En(m;¢=0) (in units of x ~2) are displayed as
a function of the angular momentum quantum
number m. In the left part the spectrum is
shown for m around 0, while in the right part
it is shown for m in the edge region. The flat
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not be regarded as having the topology of a system with a
hole. The procedure which we adopt in this particular
case m =0 is to set ¢ =0 at the onset, evaluate the current
density from the wave function, and then compute the
current by integration. Evidently, the angular momen-
tum part of the current density, 2m|y,m (#)|%/r will van-
ish for m=0 and hence only the second term on the
right-hand side of Eq. (4) will survive. The result is then
Inm=0(¢ =0) = —b. Curiously, this is just the average of
the two values obtained from the right and left deriva-
tives. Note that this procedure does not imply that we
are, in fact, considering a disk with a hole. Indeed, for a
disk with a pointlike hole, the wave function must vanish
at r=0 even for ¢ =0. Thus, the m =0 state is excluded
in this case and does not contribute at all to the current.
On the other hand, in the procedure described above, we
do get a nonzero contribution from the m =0 state
through the second term in Eq. (4). The vanishing of the
first term and the nonvanishing of the second term on the
right-hand side of Eq. (4) for m=0 and ¢ =0 are the
hallmark of a current in a simply connected disk in the
presence of a magnetic field.

We now construct and examine the behavior of the
persistent currents at zero temperature =2, I,m0[Er
— E,(m)], where 6 is the step function. The Fermi ener-
gy Er depends on the magnetic field H and on the elec-
tron number N. We first consider the dependence of 7 on
N (for a fixed value of the magnetic field) as we add elec-
trons to the system, starting from N=0. Experimentally,
variation of electron density is achieved in terms of an ap-
plied gate voltage. From the structure of the spectrum as
shown in Fig. 1, we conjecture the following three points:
(1) If a state belongs to the flat part (bulk states) of the
Landau level, then I, =0. Thus, if the Fermi energy is
locked on the bulk states of a given Landau level, the
current I, as a function of N, is flat. This structure of
plateaus has been noticed by us previously when we have
discussed the annulus geometry [5]. In the present case,
however, we will see that the value of the current on these
plateaus is quantized in an integral multiple of (e/h)
X hwc/2. (2) If m belongs to one of the edge states then
I, >0. Thus, when electrons are added on the edge
states, the current / increases monotonically with N. (3)
When the Fermi energy crosses an m =0 state, the total
current is reduced by a half unit (that is, —5), while
crossing an m <0 state reduces the current by exactly
one unit (that is, —2b). As a consequence of the above
three points we expect a combination of plateaus, mono-
tonically increasing parts, and abrupt reductions of a half
or one unit. This is indeed the case as we can see from
Fig. 2 where we display the Fermi energy and the per-
sistent current as a function of electron density n,
=N/nR2

Remarkably, the value of the current at each plateau is
quantized and equal to an integer multiple of b. The
reason for this quantization is as follows. The sum of the
currents I, in Eq. (5) can be divided into a sum over
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FIG. 2. Fermi energy and current (left ordinate) and magne-
tization (right ordinate) as functions of electron density for the
system with radius R and magnetic field b as in Fig. 1. The
current is also given in units of x ~2 [equivalent in physical units
to (e/h) hw/2]. The magnetization is given in units of us.

m =<0 and a sum over m > 0. We have just shown that
the first sum is composed of quantized and negative con-
tributions, — b for m =0 and —2b for m <0. As for the
second sum, let us fix n, and assume that it runs over
m>0 up to m', such that E,(m')=E,(m=1)=Qn'
+1)b for some n' > n. We notice that the energy curve is
very smooth in that region of m > 0, so that a replace-
ment of the derivative 9E,(m)/dm by a difference
E,(m+1)—E,(m) should be an excellent approxima-
tion. The total sum over m > 0 should then be equal to
E,(m')—E,(m=1)=2b(n'—n). To wit, when the Fer-
mi energy is locked on a Landau level we get negative
contributions — 2b from states with m <0, negative con-
tributions — b from states with m =0, and positive even
multiples of b from states with m > 0. In physical units,
the current is then an integer multiple of (e/h)hw./2.
This is somewhat surprising, since the energy quantiza-
tion is in steps of Aw,. But remember that the current is
related to the derivative of the energy. Although we have
adopted the hard wall boundary condition, it is apparent
that the quantization takes place in other boundary con-
ditions as well (say, soft wall boundary conditions).

It is also of interest to study the persistent current as a
function of the magnetic field (or rather, its inverse) for a
fixed number of electrons. If we start with a strong field
and fix the number of particles so that initially the filling
factor is less than 1, then the current will be zero since
only bulk states are occupied. Now we start to decrease
the strength of the field and the Fermi energy decreases
as well since the energy curve is lowered. At the same
time, the degeneracy of the Landau level is decreased, so
that eventually, the Fermi energy is pushed up, as edge
states from the first level are filled. This leads to a saw-
tooth structure of the Fermi energy. As before, the
current will get positive contributions from the edge
states, and abrupt, negative contributions from states
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FIG. 3. Fermi energy and persistent current (in units of
x~2), and magnetization per particle (in up) as a function of
1000/N, where N, is the number of flux quanta in the sample,
for the disk with radius R as in Figs. 1 and 2.

with m <0. Typical behavior is displayed in Fig. 3. The
conclusion is that the current is approximately periodic in
1/H. Although this is expected from the behavior of the
Fermi energy, it is the first time that de Haas-van Al-
phen type oscillations are predicted for the persistent
current and not only for the magnetization.

We have also calculated the magnetization M of the
pertinent electronic system. Unlike the current, the mag-
netization is computed from the response of the energy
spectrum to a slight change in the magnetic field, and not
to a variation of the flux. In Fig. 2 we show how the
magnetization is changed as a function of electron densi-
ty. Note that the slope dM/dn, at each Landau level n is
proportional to n+1, since the energy equals a constant
plus a term proportional to 2(n +1)n.b. The magnetiza-
tion M as a function of the inverse of the magnetic field is
displayed in Fig. 3. The interpretation of this quantity
for finite systems with hard wall boundary conditions has
been already given by Sivan and Imry [7]. Comparing
the current and the magnetization in Figs. 2 and 3 shows
that the persistent current and the magnetization are not
proportional. Magnetization of systems confined by har-
monic potentials has been analyzed by Papadopulus [8]
and by Yoshioka and Fukuyama [9].

Finally, we argue that the main result of the present
Letter (the plateau structure of the persistent current)
survives the effects of weak disorder. This property is
crucial if one intends to observe it experimentally. Con-
sider a bulk state y,m,(r,8)(m > 0) in the clean disk. As
we have indicated in connection with Eq. (3) w,.,(r,0) is
localized in the radial direction around r,. When 0 is
varied from O to 27, W,m(r,0) goes m times around the
origin of the complex plane. Let us now add a disordered
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potential which we write as AV (r) where the parameter A
is changed continuously from 0 to 1. Then y,,(r,0) is
changed continuously into another function Wy, (r,0).
Notice, however, that, since the rotational symmetry is
lost, we do not have conserved angular momentum
anymore. Yet, the subscript m on ,,, still represents the
topological number described above, and that makes
sense also in the absence of rotational symmetry. Since
m has to be an integer, it is expected not be changed as A
is varied continuously from 0 to 1 as long as ¥V (r) is small
enough.

As is commonly accepted, bulk states are localized in
the presence of a disordered potential. Hence ¥, (r,0) is
localized in the azimuthal direction. Now let us consider
Wnm+sm(r,0) which satisfies the Schrodinger equation
with an additional flux ém, with slightly modified bound-
ary conditions, namely,

Vot om (r,0=21) =e2%my, o (r,0=0).

Since the wave function is localized in the azimuthal
direction, the phase coherence is lost during the round
trip. So, the energy is insensitive to the small change ém.
Thus we have 9E,(m)/0m =0 for localized states, and
hence a flat part of the energy curve. The Fermi energy
is pinned on this energy as the number of electrons is
varied and that is all that is required for the plateau
structure of the persistent currents.

After completion of this work, we became aware of a
work by Schult et al. [10] in which magnetization is con-
sidered in a similar system. However, our main results,
pertaining to the persistent currents, are not reported
herein.
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