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Excision, Spinon, and Spin Wave Modes in a Soluble One-Dimensional
Many-Body System
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In this paper, we present the exact solution (in the thermodynamic limit) to a one-dimensional,
two-component, quantum many-body system in which like particles interact with a pair potential
s(s+ 1)/sinh (r), while unlike particles interact with a pair potential —s(s+ 1)/cosh (r). We first
give a proof of integrability, then derive the coupled equations determining the complete spectrum.
All singularities occur in the ground state when there are equal numbers of the two components; we
give explicit results for the ground state and low-lying states in this case.

PACS numbers: 71.45.Gm, 75.30.Ds

We present the exact solution (in the thermodynamic
limit) to a one-dimensional, two-component, quantum
many-body system of considerable complexity. The two
kinds of particles are distinguished by a quantum num-
ber cr = +1, which may be thought of as either spin or
charge. The system is defined by a Hamiltonian with pair
potential

as

where

Agk = ~gk ).~,'i+ (~~k —1)ci'k,

L~k = ~ikp, + t(I —~,k)o, k,

1 + c7jok
n~k = —s ' coth(x~ —xk)

2

v, k (x) = s(s + 1)
2sinh (x) 2cosh (x)

We assume s & —1. Thus for s ) 0, like particles re-
pel, while unlike particles attract. When like particles
are near, the repulsive potential increases as 1/r, while
for large separations, both potentials decay exponentially
with a decay length we take as our length scale, and hence
unity.

This system was first introduced by Calogero [1], who
showed it to be integrable. Sutherland [2] soon afterward
showed that the system could be exactly solved, and gave
the solution for a single component system. Our present
solution for the two-component system exploits in a fun-
damental way the integrability of the system [3], so we
first discuss this point.

For a classical system of N one-dimensional parti-
cles, Lax [4], Moser [5], and Calogero [6] have shown
that for certain potentials one can find two Hermitian
N x N matrices L and A that obey the Lax equation
dL/dt = i[A, L] and det[L —cull] is a constant of motion.
Expanding the determinant in powers of u, we find N
integrals of motion in involution, and thus the system is
integrable. Calogero showed that the quantum system is
also completely integrable.

For systems which support scattering, in the distant
past and future the Lax matrix L approaches a diago-
nal matrix with the momenta as diagonal elements, so
that det[t —~II] = Qi& .&~(p~ —w). Thus the individual
momenta pj are conserved in a collision, and hence, as
emphasized by Sutherland [2], the wave function is given

asymptotically by Bethe's ansatz.
The proof of Calogero, however, is very difBcult, and

only briefly sketched in the literature. For that reason,
we now offer an alternative proof of integrability based
on a method of Shastry [7]. Let us write the Lax matrices

1 —0 j0'A;
tanh(x, —x&), (4)

and n'& ——Oo~k/Ox&. Then if the two-body potential v~k

is given by vjk: A&k+o.&I, s, we find that the quantum
Lax equation [H, Lik] = pi&i&~(Lit Aik A~iLtk—) is sat-
isfied. This potential, however, is exactly the potential
for our system.

We now observe that the Lax A matrix has the follow-
ing very important property. Defining a vector ( with

(~ = 1, we see A( = (tA = 0. This allows us to con-
struct constants of motion by I„=(tL (, since

[H, I„]= (t [H, L"](, (5)

) (I. [H, I.]L" ' ~)(, (6)
0&j&n—1

) (L;[A, L]L" ' ~) q, (7)
0&j&n—1

= (t (AI." ' —I." 'A-) ( = 0-. (8)

The scattering amplitude S(k) is given by

By Jacobi's relation for commutators, [I,I ] is a con-
stant of motion, and since this is a system that supports
scattering, we see [I,I ]

—+ 0, and hence the system is
completely integrable.

Having shown the system to be integrable, we then
know the asymptotic wave function to be of the Bethe
ansatz form, and the only input needed for the Bethe
ansatz is the solution to the two-body problem. We sum-
marize the results in the center of mass frame [8] below.

For like particles, the potential is s(s+1)/sinh (r), and
the wave function is given asymptotically as
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( )
e'""+B(2k)e '"", r ~ —oo,

( )T(2k) e'"", r ~ +00.
The reflection and transmission amplitudes are R(k) =
S(k)r(k), T(k) = S(k)t(k), where

r k 12
sin vr(s + ik/2) '

13
sin haik/2

sin~(s+ ik/2)
'

There are bound states, labeled by an index m
1, 2, . . . , M, according to increasing energy, with par-
ity (—l)~ i. Bound states appear as poles of the re-
flection and transmission amplitudes, R(ki —k2) and
T(ki —k2) on the positive imaginary axis, given by
ki 2 = k + ir, k ) 0. The momentum and energy of
such a bound state is P = 2k and E = k —K . From the
particular form of the reflection and transmission ampli-
tudes, we find K = s + 1 —m, where m = 1, 2, . . . , M,
and M(s) is the smallest integer larger than s. There are
no bound states for —1 ( s & 0. Threshhold values of s
are s = 0, 1, 2, . . . , and at these values, the reflection am-
plitude vanishes. At the bound state poles we also find
r(2ir. )/t(2ir~) = (—1) i. We call the bound states
pairs.

We know the Yang-Baxter equations must hold, and
we can verify this explicitly. For a two-component sys-
tem the Yang-Baxter equations are equivalent to r2 ——

r3r1 + t3rgt1 and r3&2 ——r3t1 + t3r2r1, where r1
r(ki —k2), r2 = r(ki ks) rs = r(kq —ks), etc. , for
tj A degenerate situation occurs at a pole in r3 and t3,
when k2 —ks = 2ir~. There, since rs/t3 = (—1)
the equations become 0 = ri + (—1) roti and t2 =
ti + (—1) r2ri, where r2, i = r(k + iK ), etc. , for t~.
These relationships will be important when we calculate
phase shifts.

If a particle of type m passes through a particle of
type m', without reflection, then we have a scattering
amplitude exp[ —i8 (ki —k2)], and a corresponding
phase shift 8 (k). Let us label the unbound particle
by m = 0. Then we have found

t(k) =—

I'(1 + ik/2) I'(1 + s —ik/2)
I'(1 —ik/2)I'(1+ s+ ik/2)

(14)

I'(1+ ik/2)I'(1+ s —ik/2)
( )r(1 —k/2)r(1+. + k/2)

For bosons (fermions) the wave function must be
(anti)symmetric, so the scattering amplitude for trans-
mission will be +S(k). In what follows, we will drop fac-
tors of —1 in the scattering amplitudes, assuming that
they are taken care of by either the choice of statistics of
the particles, the choice of quantum numbers as half-odd
integers, or the choice of number of particles as even or
odd.

For unlike particles, with the potential —s(s +
1)/cosh (r), the wave function is given asymptotically
as

) &)k,
—1&m&M A:

Z= — ) q ) k'—
—1&m&M k

p—

) N K

1&m&M

(16)

(17)

Pairs pass through particles and pairs with only a
phase shift and no reflection, but particles scatter from
particles with reflection. We write the asymptotic wave
function explicitly in the Bethe ansatz form, and for now
consider only the No particles. We use the spin language,
so o, (j) =—+1 according to whether the jth particle in
the ordering x1 & & x~, has spin up or down. A
choice for all o.,(j) we denote simply by o. Then asymp-
totically the wave function is given by

@(z~o) ~ ) A(P~o) exp i ) x~ky,
1&j&Np

The summation is over all the No! permutations of the
mornenta. We arrange the A(P ~o) for fixed P as a column
vector ((P). Then the Yang-Baxter equations ensure
that we can find a consistent set of amplitudes A(P~o),
by finding the simultaneous eigenvector of the No equa-
tions

In general 8 (k) = —8 (—k) = 8 (k) and
8 (0) =0.

Now, consider the scattering of a particle k1 on a pair
of two particles with momenta k2 + iKm. Let k = k1 —k2.
Then using the degenerate Yang-Baxter equations, we
find for the scattering amplitude

S(k+ir )S(k —iK )t(k+ir ) = exp[ —i80 (k)]. (15)

Using the explicit forms, we can verify that 80~(k) is real
for k real.

Finally, we view the scattering of a pair from a pair as
the scattering of two particles with momenta k1 6 i K

from a pair with k2 6 iK . This gives us a net phase
shift 8 (k) = 8c (k —ir ) + 8a (k + iK ). Again,
using the explicit forms, we can verify that 8~~ (k) is
real for k real, and symmetric in m, m'.

To summarize, we have Ny ~ particles with o. = +1,
and N = Nt + Ng, Nt & Ng. Let there be N bound
states of each type. Then the number of unbound par-
ticles is No = N —2+i«M N; they would corre-
spond to spinons (ions) in the spin (charge) picture. Of
these particles, we have N 1 with spin down; let us call
them spin waves. Clearly N i ——Ng —Qi& &M N and
N i & No/2

We still must treat the dynamics of the spin waves;
since they are not "real" particles, but only correlations
in the quantum numbers of particles, they carry no mo-
mentum or energy. Thus, defining g = 0 for m = —1,
1 for m = 0, and 2 for m = 1, 2, . . . , M(s), we can write
the momentum and energy as
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ik~L S(kj k~)Xj j ] ' ' ' Xj &Xj ~0 ' ' Xj j+&((I) = ((I)
~ e ~

1&n&No

In this equation, the Xz n are operators given as

X~ „= Il + cr, (j)o., (n)
1+ t(k) 1 —t(k)

[o. (j)o.,(n) + oy(j)o„(n)],
r(k)

i
turn inverse scattering methods of Faddeev and Takhta-

jan [11]. We are not aware that these equations have
appeared before in the solution of a quantum many-
body problem, although the low-density case has often
appeared, for instance first in Yang's original solution
for 6-function fermions.

The solution is suKciently technical that we postpone
discussion to a later publication. However, the result
has many interesting physical consequences, and that is
what we want to discuss in this Letter. One finds for the
eigenvalues of the previous equations

(2o)

where k = ky, . —ky„.
These eigenvalue equations can again be solved by a

Bethe ansatz for the N i overturned spins —the spin
waves —on a lattice of Np particles: either (i) directly,
by the methods of Yang [9]; (ii) with commuting transfer
matrices, by the methods of Baxter [10];or (iii) by quan-

(21)

(23)

(26)p(k)dk = N/2L.
—B

The energy and momentum are given by
B

(27)P/L= 2

(28)

EO/L

N/L

FIG. 1. Ground state energy per unit length Eo/L versus
density N/L for s = —1/2, 1/2, 1, 3/2.

S'k —k ' sin sr[s —i(kj Aq)]/2e' '
sinvr[s+ i(k, —Aq)]/2

S(k~ —kn)
1&n&Np 1&q&N

In this equation, the A s are the momenta of the spin waves, and are determined from the equation
sin ~[s + i(A~ —Aq)/2] sin 7r[s —i(A~ —k„)]/2
sin vr[s —i(Aj —Aq)/2] "- sin sr[s + i(Aj —k„)]/2

We now have our two final phase shifts, for particle —spin-
wave and spin-wave —spin-wave scattering: chemical potential.

sin vr [s —ik]/2 For s & 0 the ground state consists of a spin Huid of
ep g(k) =i ln

sin~ s+ik /t'2 type m = 1 and thus spin 0. This is the bound state with
lowest binding energy, when r = s, and so P(k) = 2k

8 g g(k) =i ln (24) and E(k) = k —s . In the ground state, the k's for the
pairs distribute themselves densely with a density p(k),

As noted, there is no phase shift for spin-wave-pair scat- between limits +I3, normalized so that
tering. contribute no energy or momentum directly. B

Let us now impose periodic boundary conditions and
take any particle, pair, or spin wave around a ring of
large circumference. Along the way, it suffers a phase
change as it scatters from every other particle, pair, or
spin wave, plus a phase change of PI, where P = gk is
its own momentum. Periodicity requires that this phase
change be an integer multiple of 2', the integer being the E/L = p(k)k dk —s Ng/L.
quantum number. We write this statement as coupled —B
equations in a rather symbolic form: The integral equation which determines p(k) is

Lrjk =2~I (k )+ ) ) 8 (k —k.),
—1&m'&M k',

m = —1, 0, 1, . . . , M . (25)
Here the I (k~) are the quantum numbers, the only sub-
tlety being that for the spin waves, I & ranges only over
1 ) ~ ~ o

~ No ~

s=-1/2In this Letter, we give explicit results for the ground 1

state and low-lying states when Nt = N~, which we call
the spin or charge zero sector. This certainly is the most s=l/2

interesting case, since all singularities in the (Nr, Nl)
ground state phase diagram occur for NT ——Ni. In fact,
as we shall see, for s ) 0, the chemical potential has
a discontinuity across the line NT = Ni, and thus the s=3/2

system is an antiferrornagnet (insulator), although not of
the Neel (Mott) type. For —1 & s & 0, there is a weak
singularity at Ny ——Ki, without a discontinuity in the
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2KN/L

FIG. 2. Energy above the ground state energy versus mo-
mentum (dispersion relations) for the low-lying excitations
when s = 3/2 and density N/L = 0.943.

] ~p
xN/L 2' N/L 5

FIG. 3. Energy above the ground state energy versus mo-
mentum (dispersion relations) for the low-lying excitations
when s = —1/2 and density N/L = 0.600.

B
I/~ = p(k) + OIi(k —k') p(k')dk'. (29)2z g

In Fig. 1 we show Ep/L versus N/L for selected values
of s = 1/2, 1, 3/2.

Having determined the ground state properties of the
system, we now determine the low-energy excited states.
They are given by the following: (i) Remove a pair from
the ground state distribution, and place it outside the
limits; we call this creating a pair hole and a pair, and
it gives a two parameter continuum. (ii) Break a pair to
give two particles, one spin up and the other spin down;
this also gives a two parameter continuum. (iii) Excite a
pair into a higher energy bound state, if allowed; these we
call excitons, and they have single parameter dispersion
relations. (Away from the zero sector, we can have in
addition spin waves. These will be important for s ( 0.)

By the techniques of Yang and Yang [12], the disper-
sion relations are given parametrically by

(30)

0'„(k —k') e(k') dk'. (32)

2792

AP = ) rl k — 8 i(k —k)p(k)dk

h, E = ) — e', (k —k)e(k)dk . (31)
m

7t g
Here e(k) is the solution to the integral equation

B
k —s —py = e(k) +2 2 1

g
The chemical potential pq is the chemical potential for
pairs, given by OEp/BNq. The results are shown in Fig. 2
for s = 3/2, B = 3/2, d = N/L = 0.943, Ep/L = —0.691,
and pq

——1.215. The gap for the creation of two particles
is AE = 1.170, and is equal to the discontinuity of the
chemical potential across the line Kt. = Ng. The exciton
with m = 2 is the only exciton allowed at this value of s,
and has a gap of LE = 1.017.

For 0 & s & —1, in the zero sector, we have two coupled
equations for N particles and N/2 spin waves. However,
in the zero sector, the limits of the spin-wave distribution
are +oo. Thus we can solve by Fourier transforms for the

spin-wave distribution in terms of the particle distribu-
tion, and then substitute this into the particle equation,
giving us a single integral equation for the distribution of
particles p(k). In Fig. 1, we show Ep/L versus N/I for
s = —1/2. The excited states in the zero sector are given
by the following: (i) Remove a particle from the ground
state distribution, and place it outside the limits; we call
this creating a hole and a particle, and it gives a two
parameter continuum. (ii) Remove a spin wave from the
ground state distribution, and place it on the line with
imaginary part equal to i; we call this creating two spin
waves, one with spin up and the other with spin down.
It gives a two parameter continuum, familiar from the
Heisenberg-Ising model. The results are shown in Fig. 3,
for s = —1/2, B = 1, d = N/L = 0.600, Ep/L = 0.094,
and p, = 0.374.

Finally, we remark that all thermodynamics can be ex-
plicitly calculated, since there are no ambiguities with
counting states or diKculties with strings of length
greater than 2.
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