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New Stochastic Method for Systems with Broken Time-Reversal Symmetry:
2D Fermions in a Magnetic Field
G. Ortiz, D. M. Ceperley, and R. M. Martin

Department of Physics, University of Illinois at Urbana Cha-mpaign, 1110 West Green Street, Urbana, Illinois 61801
(Received 7 April 1993)

We present a stochastic method able to deal with complex Hermitian Hamiltonians where time
reversal invariance is broken explicitly. We fix the phase of the wave function and show that the
equation for the modulus can be solved by quantum Monte Carlo techniques. Then, any choice for
its phase provides a variational upper bound for the ground state energy of the system. We apply
the fixed phase-method to the 2D electron gas in the presence of a magnetic field with generalized
periodic boundary conditions, where we study the transition between an incompressible v = 1/m
Laughlin liquid and a Wigner crystal.
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based on the observation that the N-particle Schrodinger
equation in Euclidean time (imaginary time t) can be in-

terpreted as a diffusion and branching process [5]. All
implementations to date have required the wave function
to be real in order to use sampling methods. However, the
many-body Hamiltonian IH involves interacting fermions
in the absence of time-reversal symmetry, implying that
its eigenfunctions must be complex valued.

In order to overcome this limitation we introduce the
fixed-phase method [6]. The first step is to write the
scalar N-particle state C ('R) = IC (72)I exp [i&p('R)], with

IC I
and y real functions. Here 7Z, = (ri, . . . , r, , . . . , riv)

denotes a point in the 2N-dimensional configuration
space. The real and imaginary parts of the many-body
Schrodinger equation, IH4 = EC, yield, respectively, two
coupled equations (in atomic units):

N

ITIC'(R)l = ). 2' + V(R) IC'(R)I = &IC'(R)I (2)

) 'V, (~C(R)~ f'V, rrr('R)+A(r, )]) =0,
i=1

where the efFective potential V(R) is given by
N

V(7Z) = ) + —) [7', p('R) +A(r, )] + A.- Ir, —r, I
2

We have mapped a fermionic problem into a bosonic one
for IC I, but with the additional complication that we have

to solve simultaneously two multidimensional differential
equations. An alternative way of looking at this transfor-
mation is to regard it as a gauge transformation whose
effect is to add a vector potential [V', y('R)] to the Hamil-
tonian, giving rise to a fictitious magnetic field. The
essence of the fixed-phase method consists in making a
choice for p and solving exactly the bosonic problem for

I@I using DMC. It is easily seen that the method provides
a variational bound for the energy and, for a prescribed
trial phase yT, the lowest energy consistent with this
phase. For real symmetric Hamiltonians the jixed phase-

In spite of the significant effort devoted to develop
stochastic methods to study many-fermion systems, there
are no rigorous solutions. Purthermore, with the ex-
ception of variational approaches, all methods to date
are restricted to systems with time-reversal symmetry.
However, many interesting physical processes (particles
in an external magnetic field or in a rotating frame) in-
volve explicit breaking of this symmetry. In this Letter,
we present a general procedure to circumvent the latter
problem. Though the method turns out to be of broad
applicability we will illustrate it by the study of fermions
in the presence of magnetic fields.

The fractional quantum Hall effect (FICHE) [1] involves
2D interacting electrons under the infIuence of high per-
pendicular magnetic fields and, where particle correla-
tions are crucial to stabilize the ground state of the sys-
tem. Of particular importance is the determination of the
phase boundary between a Laughlin liquid (LL) [2] and
a Wigner crystal (WC) [3] as a function of the particle
density and Landau-level filling factor v. A transition has
been suggested based upon recent experimental observa-
tions of a reentrant insulating-FICHE-insulating behavior
around v=1/5 and v=1/3 for electron and hole systems,
respectively [4].

We are concerned with the study of the ground state
(T = 0) properties of a 2D quant'um system, defined by
the spin-free many-body Hamiltonian

N 2

where II, = p, + -'A(r, ). A is a constant potential
which ensures the global charge neutrality of the system
(neutralizing background) of N fermions of mass m* and
charge —e. The vector potential A, whose curl is the
external magnetic field B, is given by A(r) = ( By, 0)—
[A(r) = (—By/2, Bx/2)] in the Landau (symmetric)
gauge.

The approach developed in the present Letter uses dif-
fusion Monte Carlo (DMC) methods which can determine
ground state properties of many-particle systems and are
not, in principle, constrained to a variational ansatz. It is
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method reduces to the fixed no-de approximation [5] when
we make the choice y = vr [1 —O(CT /I@TI)], where 0 is
the unit step function. In this way Eq. (2) is solved
in domains of the configuration space delimited by the
nodes of the trial state CT where hard wall boundary
conditions are imposed.

We can transform the time-dependent Schrodinger
equation for IC I

in Euclidean time t to a master equa-
tion for the importance samp-led distribution P('R, t)
ICT(&)

I
IC(&, t)I,

N
= ) V', V,P—(R, t) —F,('R) P('R, t)

2=1
—[Ei„(R)—ET] P(R, t), (5)

where C T (R) = IC 7 ('R)
I
exp [i&pT('R)] is a trial function

used to guide the random walk, F, ('R) = 7', ln IC'z
I

is
the drift ««city, El..(R) = IC'TI 'HIC'TI is the ioc»
energy, and ET is a suitable trial energy which shifts the
zero of the energy spectrum. At su%.eiently long times
P(R t ~ oo) ~ IC'7 (R) I IOp(R) I

where IC'pI is the low-
est energy state, compatible with the phase pz, which
has a component in ICTI. In order to get this station-
ary distribution, ET must be adjusted to be equal to
the fixed-phase ground state energy Eo, given in turn
by Ep = limq {Ei«(R))r &«&. The modulus of the
trial state, IC'T('R) I, affects the convergence and statisti-
cal Huctuations of the stochastic averages. To solve Eq.
(5) we use methods similar to Refs. [5,7].

It is well known [8,9] that assigning boundary condi-
tions to quantum systems in a closed manifold is a subtle
matter. For particles moving on the surface of a Hat
torus in presence of a magnetic field, consistent bound-
ary conditions for the many-body state (O'7) and vec-
tor potential (A) imply that both have to change by a
"large" gauge transformation in order to allow a nonzero
quantized external flux (these are generalized periodic
boundary conditions). Hence, 4T must be a quasiperi-
odic function under a uniform translation of the system
by a lattice vector L = niL& + n2L2,

r
Oz ((rz+L)) = expl z 8 L —z) Ez(L))Oz Hrz)),l

(6)
where Lq h L2 defines the principal region of the torus,
ni, n2 are arbitrary integers, 8 is a twist angle vector
which includes the effect of the electric field, 6~(L)
is the gauge function given by A~ = x&L&/E2 [A~
(x&L„—y~L ) /2P] in the Landau (symmetric) gauge,
and I = 1/~B is the magnetic length. Note that even if
toroidal boundary conditions lead to quasiperiodic states,
the quantities in Eq. (5) ( I@z I, F, ) are genuine periodic
functions on the torus. This fact simplifies the Monte
Carlo sampling procedure.

Thus, we are left with the task of exploring the set of
nonequivalent phases (y~) and of determining the min-

o.( ) =
2~, +). ,
N . 1

(10)

Notice that Eq. (8) is just the desired second equation,
Eq. (3), except that the exact C is replaced by the trial
O'T. Thus for this class of functions, Eq. (3) is approxi-
mately satisfied analytically. Furthermore, the last equa-
tion shows that the local energy needed in the sampling
is given by an extremely simple form. These results are
independent of the manifold in which particles move, i.e. ,

of the boundary conditions.
There are two independent parameters characterizing

the 2D electron gas in the presence of a magnetic field
at T = 0: the Wigner-Seitz radius r, = 1/g~ p, which
measures interparticle spacing in units of the Bohr ra-
dius (p is the areal density), and the Landau level fill-
ing factor v = 282/r~2 It is the in.terplay between these
two parameters that will determine the zero temperature
phase diagram. As v is decreased or r, is increased the
2D system is expected to undergo a first order transition
between a LL and a WC.

In the following we will assume that the spin degrees of
freedom are frozen by the magnetic field and that no elec-
tric field is present; i.e. , we will consider the physical sit-
uation where Zeeman energies are so large that electrons
moving on the surface of the torus [Li ——(I i, 0), Lz =
(0, L2)] with boundary angle 0 = 0 are completely spin
polarized.

The unnormalized v = 1/m Laughlin state, C, with
toroidal boundary conditions has the form referred to in
Eq. (7) with (Landau gauge) [11]

imum of the functional Ep [(pT']. Of course, we do not
pretend to scan the space of all possible phases but just
use some conventional choices for yT. There are some
mathematical constraints that can be imposed on yT,
for instance, we would like to conserve the symmetries of
the Hamiltonian unless some of them are spontaneously
broken (like in the WC phase). In any case, it is obvious
that a phase that satisfies Eq. (3) (continuity equation)

for the exact I4('R)
I

will lead to the exact solution of the
many-fermion problem. Thus, trial functions C 7 that
satisfy the continuity equation are good candidates for
the phase. Consider trial functions of the form

@T(zi,z2, . . . , ziv) = F((z,)) exp [
—A((z, , z,"))], (7)

where F({z,)) is an analytic (holomorphic) function of
(z, ), and B((z, , z,*)) = P i Iz&I /4E in the symmet-

ric gauge or A((z, , z,*)) = p i yz/2P in the Landau
gauge. Particle positions are written in complex coordi-
nate representation zz ——xz + xy~. It is straightforward
to prove [10] that the above conditions on CT imply

{l&' (&r)l'I&'yr( %+&(r)))'=o,
7', . [7', &p~('R) + A(r, )] = 0,
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TABLE I. Eo &u—,/2 in units of I/E for difFerent electron densities r, and filling factors v. The first
column refers to the energy of the Laughlin wave function C), while the remaining four correspond
to the fixed-phase y result. In all cases we have used generalized periodic boundary conditions.

Tg

1/3
1/5
1/7

Laughlin
-0.4099(2)
-0.3277(1)
-0.2810(1)

1
-0.4112(2)
-0.32799(9)
-0.28118(7)

10
-0.4150(2)
-0.32902(9)
-0.28164(8)

20
-0.4179(2)
-0.32999(9)
-0.28214(9)

30
-0.4201(2)
-0.3308(1)
-0.28262(9)

m

where i)i is the first odd elliptic theta function [12],
lV

L2
Z

. vrNm
&

I q
—$12

7 l ) Zj ) Z)=N
j=l

(all center-of-mass zeros at the same point). Because
of the scaling properties of the Laughlin states with r„
its kinetic and potential energies will satisfy the virial
relation.

As a first check we use the Metropolis algorithm to
compute the expectation value of the potential energy.
The values are quoted in the first column of Table I where
energies are expressed in units of 1//. We have verified
that, up to the sizes considered in our study (N 400),
finite-size eKects are smaller than the statistical error and
it turns out, when compared to the results of Ref. [13],
that the energy is insensitive to boundary conditions.

At this point, we start our fixed-phase computation
with the Laughlin phase p = —sin [4 /]4 ]]. We
begin with an ensemble of N, =200 configurations R.,
(i = 1, . . . , N, ) distributed according to P('R, t = 0) =
]C'~] /~~C'~~], then diffuse with drift each configuration
as 'R', = R, + Et F('R,.) + 8, where H is a normally dis-
tributed random variable and the role of F is to guide the
random walk towards regions of phase space where the
trial function is larger. The total number of configura-

-0.050

tions is stabilized when ET equals the mean value of the
local energy, which in the large time limit equals the best
upper bound to the true ground state energy. The results
of this computation (Eo) are shown in Table I for N =45
spin-polarized electrons in a square Bravais lattice.

In Fig. 1 we compare (in effective a.u. ) the fixed-phase
(FP) total energy to the Laughlin (L) and Price et al. re-
cently proposed Jastrow-Slater wave function (PPH) for
r, =20. It is clear from the figure that we get a substan-
tial lowering of the liquid energies, which is relevant for
studies of the liquid-solid transition.

Figure 2 shows the mixed estimator pair correla-
tion functions defined as g(r) = [2/p(N — 1)]
x(Q,. P.+, b(r —r,~))I pz& ~& for v=1/7 at different
r, 's. The physical picture that emerges is clear, as r,
increases (lower electron densities) more correlation is
gained because of a more eEective Landau level mixing.

Let us now consider a signer crystal state using a
phase which breaks explicitly the continuous transla-
tional and rotational invariance. To this end, we will
consider the simplest trial state: a determinantal wave
function

C'w = & 4'(r'), (12)
i=1

where A is the antisymmetrization operator and
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FIG. l. Eo —ur /2 in eIFective atomic units for the Laugh-
lin liquid at r, =20. FP stands for fixed phase, PPH is the
variational state proposed by Price et at. , and L corresponds
to the Laughlin wave function. The size of the symbols is
proportional to the statistical uncertainty and lines are just a
guide to the eye.
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FIG. 2. Mixed estimator pair correlation functions, g(r),

at @=1/7. We also show the one that corresponds to the
Laughlin wave function.
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single-particle states given by (symmetric gauge) [14,15]

p, (r) = ) exp s (r —R; —L) —2t(rAK;+rl L+R;AL), ),4I'- (13)
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FIG. 3. Eo —w, /2 for the Wigner crystal at r, =20 result-
ing from different approximations. Comparison with our FP
liquid energy (from Fig. 1) is also given. HF: Eq. (13) for
@=1;LG: jam and Girvin; HFLM: HF for optimized P; ZL:
Zhu and Louie.

with P a variational parameter which fixes the width of
]

the orbital and R, points of a regular 2D triangular lat-
tice.

It turns out that, under the assumption of non-
overlapping states (P,

~ Ps ) = h', z, the total energy
(C'w

~

IHC'w)p can be evaluated analytically [10] and
minimized with respect to P. The result of this calcula-
tion for r, =20 is shown in Fig. 3 (HFLM) where we com-
pare it to the Lam and Girvin's magnetophonon wave
function results (LG) [14].

We have assessed the importance of exchange in the
total energy by using the determinantal wave function
C~. It is evident that in the low density regime particle
exchanges do not affect the total energy (which is mainly
Hartree) because of the rapid Gaussian falloff. In partic-
ular, we have checked that this is the case for r, = 20.
Thus, in order to apply the FP method, we have con-
sidered the phase that corresponds to the even simpler
unsymmetrized C~ state. Our results are described in
Fig. 3 for N = 56 particles enclosed in a rectangular torus
which is commensurate with a triangular lattice. Again,
we have verified that finite-size efFects are smaller than
the statistical uncertainties. It is apparent from the fig-
ure that for this simple choice of phase no transition to a
WC is observed at r, = 20 in the range of v's considered.

In a recent paper Zhu and Louie [15] used the varia-
tional Monte Carlo method to study the magnetic-field-
induced WC in the FICHE regime. The energies they get
for the solid phase (r, = 20) are shown in Fig. 3 with
the best energy available at the time for the liquid [13]
and concluded there would be a transition to the WC for
v=1/5. Our improved energies for the liquid show that

further work must be done to show definitively which

phase is stable at v=1/5. We are currently investigat-
ing improved FP calculations using phases which include
magnetophonon correlations.

In conclusion, we have presented a stochastic method
able to deal with complex hermitian Hamiltonians. The
method uses as a key ingredient a trial phase that plays
the role of singular gauge function in the unitary trans-
formation that maps the original fermion problem into
a boson one for the modulus of the wave function. We
applied these ideas to the 2D electron gas in a magnetic
field using two nonequivalent phases: one for the liquid
and another for the solid. The present ideas can be easily
extended to path integral methods to study the eKect of
temperature in the stability of the different states of the
2D electron gas. Other possible applications of the fixe-
d@has method include systems with rotational symmetry
and fixed angular momentum or systems in a rotating
frame.
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computing Applications.
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