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Bond Orientational Order in the Blue Phases of Chiral Liquid Crystals
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It is proposed to describe blue phases by two order parameters: the standard alignment tensor
field q p(r) and a bond orientational tensor order parameter of octahedral point group symmetry
O(482). The yet mysterious blue fog then emerges as a liquid of purely cubic bond orientational
order. In the transition from the cubic blue phases to the blue fog the cubic space group symmetry
is being reduced to its octahedral factor group. Because of the new order parameter the O (2432)
structure, which in all previous calculations proved most stable, but never has been detected in

experiment, is eliminated from the phase diagram.

PACS numbers: 64.70.Md, 05.70.Ce, 61.30.—v, 61.50.Em

Chirality is an important issue in liquid crystal physics.
It leads to fundamentally new phases like the layered
smectic-C* phases, the smectic-A* "Abrikosov" phase,
and the blue phases. Some compounds exhibit up to
three distinct blue phases labeled BPI, BPII, and BPIII
with ascending temperature [1,2]. BPIII is commonly
referred to as blue fog. It is widely accepted that the
blue phases are liquids, where the long molecular axes
form orientational patterns periodic in three directions of
space, and that BPI carries a body-centered cubic struc-
ture of space group symmetry Os(Z'4i32), BPII a sim-
ple cubic structure of space group symmetry O ('P4232)
[1,2). The structure of the blue fog, however, which is
formed directly on cooling the isotropic liquid, has yet
defied satisfactory explanation. Contrary to BPI and
BPII, the blue fog does not exhibit Bragg scattering of
light but, instead, shows a broad reflection band typical
for an amorphous system [1,3,4].

Several models have been proposed for the blue fog
structure: (a) an amorphous model [1] where BPIII is
viewed as a second isotropic liquid, but with a difFerent
local structure; (b) an icosahedral model [1,5,6] where
BPIII is assumed to possess a quasiperiodic icosahedral
symmetry, similar to that of the binary metallic qua-
sicrystals; and (c) a model of bond orientational order
[71.

Only the icosahedral model hap been accessible to an-
alytical and numerical calculations of the free energy
and of the corresponding phase diagrams. But the re-
sults show [6] that none of the many tested quasiperiodic
icosahedral structures is stable just below the isotropic
liquid. Instead, theory with great certainty predicts a
body-centered cubic structure of space group O5(2432)
on that part of the phase diagram where BPIII is seen
[8]. But an Os structure has never been detected exper-
imentally in chiral liquid crystals.

Thus it seems that there are two probably correlated
problems for a correct theory: first a credible model for
the structure of the blue fog and, second, a mechanism
that destabilizes the 0 structure.

In this Letter we argue that the solution to both prob-

lems is fluctuations of the orientational order, destroying
the BPI and BPII lattices. One model emerging for the
blue fog is that although the translational order of BPI or
BPII is being lost due to the fluctuations, a cubic orienta-
tional order remains. Such a concept was long ago envis-
aged by Nelson and Toner [9]. The phenomenon where
due to large displacive fluctuations of the atomic posi-
tions or due to the unbinding of dislocation dipoles the
translational order is destroyed, but the bonds of the dif-
ferent atomic clusters remain oriented, is denoted "bond
orientational order. " In blue phases one has to imag-
ine that the periodic sequence of cubic unit cells or—as
frequently depicted —of disclination lines, is interrupted,
but that substructures of the cells or parts of the discli-
nation array preserve a cubic alignment. Despite the fact
that in this sense there are no bonds in the blue phases,
we continue to use the notion "bond orientational order. "

The order of the molecular axes is described by a trace-
less and symmetric quadrupole tensor field Q(r) which
we divide into a mean field part Qg(r) of periodic (or
quasiperiodic) symmetry Q and a contribution Q (r)
from fluctuations: Q(r) = Qg(r) + Qs(r). We express
the bond orientational order by a hexadecupole moment
in the form of a fourth rank tensor B p„. Its corre-
sponding observable is a nonlinear dielectric susceptibil-
ity E p„, which actually has been detected in cubic blue
phases by Pieranski et aL [10]. The main result of our
calculations is that in a large range of the phenomeno-
logical parameters a pure bond oriented phase [Qg(r)
= 0, B p„g 0] becomes stable in the temperature-
chirality regime of the blue fog. Cubic phases of 0 and
0 structure with finite values of both order parameters
appear in the neighborhood. The free energy of phases,
whose quadrupole-tensor field lacks wave vectors in re-
ciprocal space along the simple cubic axes of [n00]-type
(n = 1, 2, ...), is enhanced by coupling terms of both or-
der parameters. This is the case for the Os structure,
and it is the mechanism by which the 0 structure is
destabilized.

To start we establish a general de Gennes —Wilson-
Ginzburg-Landau free energy as a functional integral:
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F[Q(r)] = +if GL[Q (r)] & P I I)Q (r)eXp( P+ (+deGL[Q (r) + Q (r)] +deGL[Q (r)])) ( )

The standard mean field free energy PdeGL divides into

Xd GL[Q(r)] = v

(2)

where in terms of dimensionless units introduced by
Grebel et al. [8] the elastic and the bulk parts read

+ p[Q*&,~l')

Xg ii, [Q(r)] = 7trQ —V6trQ + (trQ ) .

(3)

(4)

where

Q (k, r) = Q (~k[) . exp(ik. r —i@ &).

The wave vectors k are taken out of the reciprocal lattice
of a space group g, where *k = (k': k' = Sk, (S[t) 6 g j
is the star of k; N. A is the number of prongs of the star
*k, Q ([k[) are the variational parameters in the expan-

sion, and finally e - are the spin L = 2 tensors rep-I.&]

resented in an orthogonal, right-handed local coordinate
system with k as quantization axis (for a precise defini-
tion see [8,11]). We are going to replace the second term
of Eq. (1), describing the inHuence of the Huctuations,
by an effective functional containing the bond order pa-
rameter. But first let us motivate this practice by an
analysis of the high-chirality limit [1,5] of the free energy
(1), which is established for r —+ oo with r = const, &9

= (k~T) ir2 =const, and
PF/r=const. The bulk part

of Pg, GL/K2 then vanishes, and the ground state is de
termined exclusively by the elastic part.

K is the chirality parameter, t the standard reduced tem-
perature of Landau theory, r =

4 (t —K2) the renormalized
reduced temperature entering naturally as a parameter
in the high-chirality limit, p an elastic constant, T the
absolute temperature, and P = (k~T) ir .

The most probable mean-field configuration Q~(r) is
a "saddle point" of the functional integral (1). It is ob-
tained in practice by a plane wave ansatz for all relevant
periodic and quasiperiodic tensor fields,

In Refs. [1,5] it is demonstrated that the ground state
of (2) for the high chirality limit, denoted Q"'i(r), con-
sists of an arbitrary linear combination of the plane wave
tensor modes with helicity m = 2 and wave vectors of
the sphere [k[ = 1. This ground state is continuously
degenerate and has the same free energy as the isotropic
liquid state. For finite chiralities the degeneracy of Q"'
is removed by the bulk free energy. The most stable
structure just below the isotropic liquid found to date
has 05 symmetry.

Thermal fluctuations, not taken into account in this
mean-field analysis, may change the scenario drastically.
Let us fix r and P in the free energy expression (1) and
increase r. The free energy difference, r (AF) be-
tween ground states of various space group structures
with m = 2 and wave vectors selected from the sphere
~k[ = 1 vanishes, and the energy of the infinite chirality
state is of order K . Thus, for K large enough, fluctu-
ations lead from one state to another and destroy any
space group structure, including 05.

Some implications of the fluctuation processes as de-
scribed above have been analyzed by Brazovskii et at.
[12]. Here we will follow a line of thought where the Huc-

tuations are assumed to mix different cubic space group
symmetries. Thus they destroy their translational sym-
metry, but preserve what is common, namely, the factor
group symmetry elements. Generalizing the results of
Nelson and Toner [9] and of 3aric [13] we introduce a
(spatially constant) bond orientational tensor order pa-
rameter B p„. It can be divided into irreducible tensors
BLp„of the rotation group SO(3) with momenta L = 0,
2, and 4. We aim at a hexadecupolar order parameter,
and hence only take regard of the L = 4 part B4&„.The
corresponding nonlinear dielectric susceptibility 8 &„ is
responsible for an alignment of BPI and BPII crystallites
and has been studied in experiments of Pieranski et cl.
[10].

The Huctuation part of the free energy (1) is now
replaced by an effective SO(3)-invariant polynomial
P„„„i[Qg(r),H ], coupling the alignment tensor field

Q (r) to H, and a polynomial Fbo„d[B ] solely in the
components of B4:

F[Q (r) B'] =&d.GL[Q (r)]+&- pi[Q (r) B']
+&b. d[&'] (7)

The lowest-order coupling terms involve one coupling
constant A:

(8)&„„„i[Qg(r),H ]
= Bp b d r[Qg—p—(r)Qgb(r) + Qg (r)Qpg&(r) + Q~b(r)Q~p(r)).

For a positive definite free energy T&,„p must be expanded up to fourth order in R4 and contains four independent
coeKcients [13]:

4 4 4 4 4 4 4 2 4 4 4 4
&bond[A ] = azB p&bB~p&b + asBnppbBnppvBpi'&pv + a4 i(Be&p&bBe&p&b) + a4 zBo&p&bB&bpv pvp poo&p &
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where according to Landau the weight of the quadratic
part depends on the thermostatic control parameters:
a2 = a&(~, r.').

As a global minimization of the functional (7) is ex-
tremely diFicult, we follow a standard procedure to min-
irnize the Pg „g[H ] part first. The "bond orientation"
phase diagram for the free energy (9) over the space of
phenomenological coefIicients a2, a3, a4 y, a4 2 has been
analyzed in detail by Jaric [13]. There are only three
point groups allowed for tensors minimizing (9) adjacent
to the isotropic state: Oh, D~h, , and D4h, . The phase
diagram is dominated by the octahedral structure Oh, ,

which is accessed through either a first-order phase tran-
sition or a multicritical continuous transition [13]. The
transition isotropic to D h, is only of Erst order, whereas
the transition isotropic to D4h is only of second order and
the least probable one, as it requires a2 = a3 = 0. There-
fore, and because structures of D h symmetry have not
been detected experimentally in the blue phases, we re-
strict ourselves to the space of Oh, -symmetric hexade-
cupole tensors, which reads

B'p~p = BoBap~~ = Bov2v5V7

(10)

Here B0 is the norm of H, and e „- are the spin L = 4I4l

tensors represented in an orthogonal, right-handed basis
tripod (ur, u2, us = u) with u as quantization axis.

The free energy (9) over the space of cubic tensors (10)
only depends on BQ.

Fb,„d,[B ]
= a(K, ~)Bo —bBo + cBo,

where b and c ) 0 are combinations of the coefficients
a, (9) and as such arbitrary. From the observations
of Pieranski et al. [10] it follows that the quartic form
n npn~np B

& &
has maxima along the faces of the cube

(the tensor is "pronged" rather than "pierced, " simi-
larly as uniaxial quadrupole tensors may be prolate and
oblate). Therefore Bo ) 0, and the parameter b must be
positive. Scaling B0 appropriately, we can set 6 = l.

For arbitrary control parameters (K,~) and for fixed
values of the remaining coeKcients, the minimization is
now performed along the following route: The free en-

ergy at this stage depends on Qg, the norm Bo of H4
and the orientation of H4 with respect to the laboratory
frame, expressed by the tripod (ur, u2, u). Q (r) is as
usual expanded into plane waves with helicity as in Eq.
(5). For practical calculations we restrict this expansion
to two leading stars ('ki, *k2) in reciprocal space and
select only m = 2 modes, which correspond to the low-

lying branch of the excitation spectrum for the quadratic
part of Pd,,c,r, [8]. Hence the minimization procedure is
reduced to a minimization over the space of amplitudes
Q (]k]). The orientation of the tripod is determined by
minimization of the coupling term (8), which now reads

&- pi = -3B ) ~ [Q2(lkl)]'B p.~((ui u~ u))
qg *k

x E[~p~p](*k), (12)

where

&[ p ](*k) = ).(&, „-)[ p(e, „-) ]

kg. k

is the fourth rank tensor. For all the cubic space groups it
has octahedral symmetry Oh, with the fourfold symmetry
axes parallel to the laboratory frame. [nPp6] denotes
symmetrization over all indices.

The orientation of the tripod (ui i u2, u), minimiz-

ing (12), is found with the help of standard quater-
nion parametrization, and for A ) 0 can be summa-
rized as follows: (a) If 'k = [n, 0, 0], B~p—~q((ui, u2, u))
xE[~p~q(*k)—: I3 K is —minimal for a tripod con-
structed out of [100] directions, and maximal for a tripod
constructed out of [122] directions. (b) If "k = [n, n, 0] or
[n, n, 2n] it is just the opposite. Now the phase diagrams
can be analyzed numerically, assuming that a(K, &) of
Eq. (11) is linear in ~ and K: a(K, 7.) = a(~ —br ) —~,
where a, b, and ~ are parameters. As an example we
studied phase diagrams in the region a = 1, 6 = 1,7 = 0.

For A ( 0 the phase diagrams are similar to those of the
standard theory of blue phases [8]. Cases with bond ori-
ented phase and 0 structure on the same phase diagram
are also found. For A ) 0, however, the coupling term
(12) enhances the equilibrium values of the Q2([n00]) am-
plitudes which lowers the free energy of 0 and 0 and,
consequently, the 05 structure is destabi]]sized. The bond
oriented phase may appear directly below the isotropic
phase. To illustrate this behavior a typical phase diagram
is presented in Fig. 1(a). All phase transitions involved
are first order.

For the parameter range of Fig. 1(a) we did not find
the 0 phase to be absolutely stable. This feature is
characteristic of all two-star calculations [8]. Our anal-
ysis, however, clearly shows that due to the presence of
bond order the stability of the 0 is considerably en-
hanced over the Os. This is demonstrated in Fig. 1(b),
for which 02 has not been included.

The present analysis, solely restricted to cubic space
groups, makes no definite statement about the stability
of the cholesteric phase, where BD ——0. As the coupling
term (12) vanishes in this case there is no extra gain in

the free energy due to the bond order. Consequently, for
all phase diagrams similar to Fig. 1(a), the cholesteric
phase is always less stable than the bond oriented phase
and at least the high temperature part of the 0 . Details
depend upon an arbitrary energy scale of the bond free
energy (ll) which has been ruled out in our analysis.

Summarizing, the theory of blue phases should in-

clude, in addition to the standard quadrupolar alignment
tensor field Q, an order parameter for the cubic bond-
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BPI or BPII cubic lattices is lost in BPIII, but the sys-
tern still remembers the orientation of crystallographic
axes. DiKraction maxima should still be observed but
there are no periodic planes to produce coherent Bragg
diKraction. The position of a broad selective reHection
band in BPIII, which is close to the [100] peak of BPII,
again seems to be in favor of the present theory.

To test the predictions of this theory measurements of
the nonlinear dielectric tensor E p„, e.g. , with the he/p

of three ivave -mixing, are urgently needed
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FIG. 1. Theoretical phase diagrams for a = 1, b = 1.5,
r = 0, c = 1 when (a) all relevant cubic phases and the bond
oriented phase (CBOO) are allowed, and (b) the Q phase is
not included.

orientational order. It accounts for the alignment of cubic
blue phase crystallites by weak electric or magnetic fields

[10]. It also rules out the artificial Os structure of the
standard theory [8] by selecting wave vectors which point
into [n00] directions. For a coupling parameter A ) 0
the [n00] harmonics (n = 1, 2) of the order parameter
expansion become dominant and enhance the stability of
0 and 0 structures with respect to 0 . This again is
in agreement with light scattering experiments in BPII,
which show that the intensity of the [100] reflection dom-
inates over the intensity of [110] reflexes. Finally, cubic
bond ordering can arise before any space group symme-
try becomes relevant. This implies that the cubic bond
oriented phase is a natural candidate for the structure of
BPIII. According to this model the translational order of
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