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Theory of Structural Phase Transitions in a Trapped Coulomb Crystal
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Crystalline confined systems of charges exhibit structural phase transitions as a function of the anisot-
ropy of the confining potential. A theory which describes these structural transitions is presented. The
theory is based on the transitions which occur in infinite homogeneous 1D and 2D systems. These transi-
tions have been previously explored for 1D systems but not for 2D systems. The charge density in the in-
homogeneous crystal is found using a fluid theory as well as a theory which keeps correlations in the lo-
cal density approximation.

PACS numbers: 64.70.—p, 61.50.—f

In several recent experiments [1-4] the technique of
laser cooling applied to trapped ions has led to the forma-
tion of crystalline ionic systems of a single sign of charge.
In this novel form of condensed matter, the ions are held
together against their mutual Coulomb repulsion not by a
neutralizing background of electrons, but rather by the
external fields of a (radio-frequency) Paul [2-4] or (mag-
netic) Penning [1] trap. This unneutralized collection of
ions represents the least dense (on the order of 10
cm ) form of condensed matter yet studied.

In most experiments the number of trapped ions is
small (N 510 ) so the crystalline system is inhomogene-
ous, and the structure of the crystal is aff'ected by this in-
homogeneity. For example, a Paul trap in a ring
configuration has been used to trap a toroidal cloud of
ions [4]. The ions are attracted to the circular ring axis
by an external potential of the form mto, r /2, where r is
distance from the axis, m is the ion mass, and m, is the
radial oscillation frequency. For sufficiently large co, the
ions form a 1D chain of equally spaced charges around
the ring circumference. As m, decreases, Coulomb repul-
sion induces an instability in the chain wherein ions alter-
nate in a zigzag pattern from one side of the. ring axis to
the other. As the radial force weakens further the zigzag
develops a twist, forming a double helix that winds
around the axis. A comparison of the energies of these
structures predicts that the transitions occur when

(q /ma') 't'/co, =x;, (1)

where a is the axial spacing between charges of charge
q, x~ = [7/((3)/2] 't =2.05. . . for the zigzag transition [5]
and xz=1.29. . . for the helical transition [6]. At lower
transition values x; more complex structures occur con-
sisting of concentric cylindrical shells of ions [4-7].

The theory of the structural transitions in the ring map
is simplified by the homogeneity of the torus in the az-
imuthal direction; that is, the charge per unit axial length
does not vary. However, in many traps the ions are
confined in a harmonic external potential of the form
P(r, z) =m(co„r +co, z )/2, where z measures distance
along the trap axis, and co, is the axial frequency. A
measure of the trap anisotropy is given by the parameter
a =—co, /co„; for given N the crystal structure depends only
on a. Although the system is now inhomogeneous in z,

structures analogous to the 1D chain, the zigzag, and the
helix are still observed. In particular, one set of simula-
tions [8] finds that for small a the ions form an inhomo-
geneous 1D chain along the trap axis, but as a increases,
at some point a~(N) a zigzag structure develops for ions
near the trap center, and at a larger value a2(N) the zig-
zag twists to form an inhomogeneous finite-length helix.
For still larger values of a concentric spheroidal shell
structures appear [7,9]. For a) 1 the spheroidal struc-
tures become oblate and finally at some value a3(N) they
collapse into the x-y plane, forming a distorted 2D hexag-
onal lattice.

It is important to understand how and when these tran-
sitions occur in an inhomogeneous crystal; for example,
the performance of an atomic clock based on an inhomo-
geneous 1D chain depends crucially on trapping many
ions and holding them along the axis in the 1D chain
configuration [3]. Although empirical scaling laws of the
form a;(N) —N ', p; a real number, were obtained from
the numerical simulations [8], a theory for these power
laws was not put forward. In this paper we develop a
simple model for the occurrence of these structural tran-
sitions which matches the large N simulation results;
however, we find that only for a3 is the above power law
form correct. In the process we analytically determine
how the length L of an inhomogeneous 1D chain varies
with N. We find that a proper explanation of this varia-
tion requires a theory which keeps the correlations be-
tween the ions, and we employ the local density approxi-
mation [10] to take these correlations into account.

Furthermore, in order to explain a3(N) we also explore
the structural transitions of a 2D homogeneous system
confined in the x-y plane by a potential mto, z /2. Al-
though it is well known for sufficiently large co, the
charges form a single 2D hexagonal lattice plane, the
structures which arise as ~, is lowered have not been pre-
viously determined. Here we predict them through both
a minimum energy analysis and a stability analysis.

We first consider the zigzag and helical transitions
which occur in the inhomogeneous chain confined by the
harmonic potential P(r, z). When the spacing a between
charges is constant, Eq. (1) determines the transition
points. Now, however, a =a(z) so we make the simplest
possible approximation: In the finite confined system the

0031-9007/93/71 (17)/275 3 (4)$06.00
1993 The American Physical Society

2753



VOLUME 71, NUMBER 17 PH YSICAL REVIEW LETTERS 25 OCTOBER 1993

transitions occur at the point where a(z) decreases below
the bounds set by Eq. (1). This predicts that the transi-
tions should occur at the center of the chain where the
spacing is smallest, and indeed this is what is observed in

the simulations.
In order to find the transition point we need to find the

axial spacing a(z), or in particular am;„=min[a(z)l. As
the simplest first approximation, we replace the chain of
N charges by a charged Auid with total charge Nq. This
globule of fluid assumes some equilibrium shape and den-
sity in the external potential p and we calculate a(z) as
the inverse of the charge per unit length along the z axis
of the globule.

Although this is a well-posed problem for a general
trap geometry, we are particularly fortunate in that the
equilibrium of a charged Auid in a harmonic potential has
been previously calculated [11]. The fluid assumes a uni-
form density no since the harmonic confining potential
can be thought of as being produced by a uniform neu-
tralizing background charge of number density
no=& P/4rrq =(1+2/a)ao, where ao ——(4rrq /mco, ) '~3

is a scale length on order of an ion-ion spacing when
a) 1 (note that p has a nonzero Laplacian as it is not en-
tirely of electrostatic origin [1-4]). In equilibrium the
Auid matches its density to no. The shape of the Auid glo-
bule is a spheroid of length 2L and diameter 2R where
the ratio p= R/L is a kno—wn function of a [11]:

a =~ (P)/[I —~ (P)/2], (2a)
where 2 is a function proportional to the z component of
the self-electric-field in the spheroid:

& (P) =P'[ln [(I +a)/(I —k) ] —2k]/k ', (2b)

and where k=dl —p . Equations (2), together with the
relation N =4rrR Lno/3, determine R and L. In the
small a (small p) limit A(p) 2p [ln(2/p) 1] and
these equations yield the following result for the length
2L of the highly prolate spheroid:

L =3Nao [In(32mL /3Naao) '~ —I]/4rr. (3)

a;(N) =
2

8 [ln(3Nx;/2"') —I], f =1,2.
3x;N (5)

This equation is a good match to the numerical results
of Ref. [8] at large N (see Fig. 1). However, the large N
logarithmic scaling of Eq. (5) differs from the power law
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Now, the number of charges per unit length along the
axis of a spheroid is given by

1/a(z) =——[1 —z /L ],3 N
4 L

so the minimum value of a(z) occurs at z =0 and is equal
to am;, =4L/3N. An inhomogeneous zigzag or helical in-
stability will set in when a;„ falls below the bounds set
by Eq. (1). This implies a limit for L, which when substi-
tuted into Eq. (3), yields the following equation for
a, (N):
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FIG. l. Locations al(N), a2(N), and a3(N) of the inhomo-
geneous zigzag, helical, and planar phase transitions, respective-
ly. Solid lines: Eq. (5) for a| and az. Equation (10) for al is
also plotted, but it cannot be distinguished from Eq. (5).
Dashed line: Eq. (7) for a3. Crosses, solid points, open points:
simulation results of Ref. [81 for zigzag, helical, and planar
transitions, respectively.

estimates of Ref. [8].
Turning now to the transition from an oblate structure

to a 2D system confined in the x-y plane we again employ
an approach based on the transitions in an infinite homo-
geneous lattice, this time a 2D lattice of number density
cr per unit area confined by the potential me@, z /2. The
structural transitions of this system have not been previ-
ously explored but can be determined by employing
known results for the correlation energy E„„,of systems
of P lattice planes bounded in z by this harmonic poten-
tial [12]. The correlation energy is the actual energy
minus the energy in the Auid approximation.

In this theory, discussed in detail in Ref. [12], it is
shown that F.„„is determined solely by the value of P,
the 2D lattice type within each plane, and the dimension-
less parameter o.ao. The main simplifying assumption is
that each lattice plane has the same symmetry. The
configuration of minimum energy is found by comparing
Ego as a function of P and aao for several 2D lattice
types. By employing the equation for E„„derived in

Ref. [12], we have found that the single 2D hexagonal
lattice plane is no longer the minimum energy state when
ciao increases beyond crag =wt, where w~ =1.11. . . (wl is2 2=
the first 2D transition value, analogous to the 1D transi-
tion value xl). Just beyond this point the minimum ener-

gy state consists of three closely spaced 2D hexagonal lat-
tice planes, each with density o/3, as shown in the legend
of Fig. 2. The z position of the planes as a function of o.

is also exhibited in this figure.
This three plane configuration arises from the single

plane state through an instability of the 2D lattice. We
study the instability by calculating the lattice normal
modes. We linearize the equations of motion of the ions
about their equilibrium positions p in a hexagonal lattice,
where p=[(m+n/2)x+ J3ny/2]a~, l, m and n are in-

tegers, and al, t=(2/J3cr)'~ is the lattice constant. By
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FIG. 2. Minimum energy configurations (lattice type and z

position of lattice planes) versus the number of charges per unit

area, cr, in a 2D system of ions confined by the potential
mco, z /2. Within each plane one of three lattice types occurs;
dashed line: 2D hexagonal; thin solid line: square; thick solid
line: bcc 110. Structures are shown in the legend; different
symbols refer to ions in different planes.

taking the ion displacements proportional to exp(ik. p)
where k is a wave vector in the x-y plane, some algebra
then reveals that the square of the normal mode frequen-
cy, cu (k), is an eigenvalue of the three-dimensional ma-
trix A(k) where

A(k) =q /(mN) g [1 —cos(k. p)]
P

&c (3pp —1p 2)/p s+ co 2zz,

1 is the 3D unit matrix, and the sum excludes p =0. For
any k there are three polarizations given by the eigenvec-
tors of A. One polarization is always in the z direction;
the other two are in the x-y plane. When k~ =0, the
latter two modes have polarizations in the x and y direc-
tions corresponding to compressional and transverse oscil-
lations, respectively. Frequencies of the three modes are
shown in Fig. 3 along the k~ =0 line for two values of
craii near instability. At k» =0, k„a1,i =4»r/3, the z polar-
ization induces displacements corresponding to the three
hexagonal planes shown in Fig. 2; this mode becomes un-

stable when crap =w ~.

At still larger values of oap the three hexagonal lattice
planes are no longer the minimum energy state. At
oap =w2=1. 15 they are replaced by two lattice planes
with square symmetry (see Fig. 2); no instability develops
in this case as the new equilibrium is a separate local
minimum in the correlation energy function. At aap

w3 1.57 the two plane state is replaced by another
two plane state, in this case a state in which each plane
has the symmetry of bcc (110) lattice planes as shown in

Fig. 2. States further along in the sequence are also
displayed.

We will use the first 2D transition to describe the
structural transition at a3(N) which is observed in the
simulations. We again assume that in the finite system
where o =cr(r), the inhomogeneous transition occurs
when c»(r)ari=ivl. Replacing the N charges by a uni-

xalat
FIG. 3. Frequencies c0(k) of the three normal modes for a

2D hexagonal lattice, density a. per unit area, confined in the
x-y plane by a potential mco, z /2. Here k» =0 and k„al,i runs

between 0 and 2»r, where the lattice constant ai,i—= (2/J3cr)'~ .
Solid lines: oaf =1.11; dotted lines: oat =1.07. Labels x, y, z
refer to mode polarizations.

form spheroid, in this fluid approximation the number
density per unit area varies as

o(r) =(3N/2rrR )Jl —r /R (6)

where R is found by using Eq. (2) in the oblate (a,P)) 1)
limit: R =3aNari/16. When the maximum value of
o(r), 3N/2zR, is used in the instability criterion we ob-
tain the following scaling law for a3(N):

a, (N) =(96N/rr'u ') '/' (7)

Equation (7) is plotted in Fig. 1 along with the data tak-
en from Fig. 4(b) of Ref. [8] for this transition; the fit is

good at large N and the N' scaling of the result is very
close to the N scaling propose'd in Ref. [8].

The phase consisting of a pair of square lattice planes
has also been observed in the center (r/R &0.7) of an
oblate crystal at N=500 at a=20 [8]. These N and a
values imply that cr(r =0)aii =1.57. The square phase is
stable for 1.15 & crag & 1.57, so Eq. (6) predicts that this
phase appears for r/R & 0.68, consistent with the simula-
tion.

Finally, we return to an important problem inherent in

Eq. (3) which we have not previously mentioned: Equa-
tion (3) implies that the length of a 1D Coulomb chain
depends on the radial confining force, and in particular as
co, ~,L ~. This problem arises because the fluid
approximation does not work for a 1D system: A line
charge has infinite fluid energy. In other words, the
discreteness of the 1D chain must be taken into account.
To see this in another way, note that the total energy of a
1D system scales roughly as q N2/L, whereas the corre-
lation energy is of the same order, scaling as
Nq2/a —Nq2(N/L), so discreteness cannot be neglected.
(This is not true in higher-dimensional Coulombic sys-
tems of size L since discreteness energy scales as
Nq N '/ /L for dimension D.)

Correlations can be accounted for by recourse to a 1D
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E„,„= y
——+ In(Rn/2a)Ãq 1

a
(8)

where y =0.577. . . is Euler's constant.
The correlation energy of the finite system is then cal-

culated in the LDA as a density-weighted average of Eq.
(8): (E«„„)=N ' f dza '(z)E„„,[a(z)], and we now

consider Eq. (4) as a trial variational function for a(z)
with a single parameter L, equal to half the chain length.
This a(z) implies that the uniform Auid cylinder is re-
placed by a spheroid, so in Eq. (8) Rn is replaced by
(I —z /L ) 't . The integral can be performed analyti-

cally, yielding

3(E««) =— N [y —13/5+in(3NR/L)] .

This average correlation energy can be used to find the
length 2L of the chain of charges by minimizing the total
energy E of the system with respect to the variational
parameter L. The energy is a sum of potential energies
due to the harmonic well and the Coulomb self-energy:
E=Nmta, (z )/2+U„where U, =q p;&i iz; —zii
and (zz) =Lz/5 by Eq. (4). We then break U, up into
two pieces: U, =Uf+(U, —Uf) where Uf is the Auid

self-energy of the spheroid [14]: Uf =3q N [2+ [p —I]
xA(p)]/10L. Next, we approximate the correlation en-

ergy U, —Uf by (E«„,). Using the p))1 limit of A and
setting t)E/tJL =0 yields an expression for L which is in-

dependent of R:

I = 3Nao [ln(6N) + y
—13/5]/4tr . (9)

This expression solves the problem inherent in Eq. (3):
Now the 1D chain length 2L is independent of the radial
force, as it should be. Equation (3) is not independent of
co, because there we approximated the line of charges by
a Auid of finite radial extent. Thus, Eq. (3) describes the
approximate length of the zigzag and helical phases and
Eq. (9) describes the ID chain.

However, when Eq. (9) is used in Eq. (4) to obtain the
minimum lattice spacing a;„,and when this result is em-
ployed in Eq. (1), the result for the zigzag transition is
almost identical to the simple fluid model:

' 2

a, (N) = 8
3x ]N

(10)[In (6N) + y
—13/51 .

version of the local density approximation (LDA) [10].
In this approximation we develop an expression for the
correlation energy of the inhomogeneous crystal based on

the energy of an infinite 1D chain. For an infinite chain
with interparticle spacing a the correlation energy E„„is

the diAerence between the energy of the actual discrete
system and the energy of a uniform fluid cylinder of ra-
dius Ro with density per unit length equal to 1/a. This
energy diA'erence can be calculated through the use of
Ewald techniques in the spirit of Ref. [13] (note, howev-

er, that in Ref. [13] E«„, is defined diA'erently); the result
is

It is heartening that Eqs. (5) and (10) provide nearly
identical results for al (N). This is not a coincidence: At
the zigzag transition the lengths of the zigzag phase [Eq.
(3)] and the 1D chain [Eq. (9)] should be equal, so Eqs.
(5) and (10) should also give equal values for al. Both
equations are approximate: Equation (5) neglects corre-
lations whereas Eq. (10) keeps correlations in the LDA
with a single parameter trial variational function. A
more accurate version of the LDA involves a numerical
solution of the variation problem BE/Ba(z) =0. Results
of this analysis will be presented elsewhere.

We have derived economical expressions for the zigzag,
helical, and planar transitions of an in homogeneous
Coulomb crystal. Our expressions match the large N re-
sults of recent computer simulations [8], but our scaling
laws for the zigzag and helical transitions [Eqs. (5) and
(10)] diA'er from the power law forms put forward in Ref.
[8]. We have also employed the local density approxima-
tion to determine the length 2L of the inhomogeneous 1D
Coulomb chain. Our results for L(N) and at(N), Eqs.
(9) and (10), can be used to find the trap fields required
to hold a ID chain of given number and length. Finally,
we have predicted the planar structures which should be
observed in a highly oblate crystal. They consist of
stacked hexagonal, square, or bcc 110 lattice planes, de-
pending sensitively on the values of a and N. Only two of
these planar structures —the single plane hexagonal lat-
tice and the two plane square lattice —have yet been ob-
served in simulations or experiments.
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