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A novel hierarchy of the one-dimensional SU(N) electron models with 1/r interaction is pro-
posed and solved by the asymptotic Bethe ansatz both for the continuum and lattice cases. The
construction of the hierarchy is closely related to that for the fractional quantum Hall effect (FICHE)
of the filling factor v, = 1/[pi —1/(p2 — . —1/piv) . ]. Under the chiral constraint the model
describes the essential properties of the edge states for the FICHE with the above filling fraction.
Furthermore the matrix deduced from the excitation spectrum characterizes the topological order
of the FICHE state.

PACS numbers: 73.40.Hm, 05.30.—d, 73.20.Dx

It has been known that one-dimensional (1D) inte-
grable quantum models with 1/r2 interaction may have
a fundamental relationship [1,2] to the edge states of the
fractional quantum Hall effect (FQHE) [3—5]. The con-
struction of the eigenstates for the above models is indeed
quite analogous to that for the FQHE; the ground state
is given by the 3astrow-Slater wave function and the ex-
cited states are constructed by multiplying polynomials
to the ground-state wave function [6—9]. Besides its own
interest in the viewpoint of the integrability, therefore,
this class of the quantum models is considered to exhibit
interesting phenomena related to the FQHE [1,2].

In this paper we propose a novel hierarchy of the 1D
SU(N) electron models with 1/r~ interaction, which has
the close relationship to the hierarchical FQHE with the
filling factor v, = 1/[pi —1/(p2 — —1/piv) ]. The
spectrum, the bulk quantities, and the correlation expo-
nents are computed by means of the asymptotic Bethe-
ansatz (ABA) method [6,10]. We then clarify the rela-
tionship to the edge states of the FQHE in the disk ge-
ometry by imposing the chiral constraint [11,12]. In the
classification of the energy spectrum we encounter the
N x K matrix, and find that it coincides exactly with
the matrix which specifies the topological order of the
FQHE state with the above filling fraction v, [13).

We introduce a hierarchy of the Hamiltonians for the
SU(N) electrons mutually interacting with 1/r2 potential
in the 1D periodic ring of the circumference I,

.f 7r (p((p+ P,, )

where (p = p i A~ with A~ ) 0, and P, pis the spin ex-.
change operator with the spin indices ri, P = 1, 2, . . . , N.
We define the ith stage of the hierarchy (i = 0, 1, . . . , N)
by the set of parameters A~ ) 0 (=0) for j & i (j ) i).
Obviously the zeroth stage of the model describes the
noninteracting SU(N) electrons. The first family is intro-

duced by turning on the interaction A& to the noninteract-
ing Hamiltonian. Since the interaction A& acts on every
species of electrons, it only modifies the charge sector of
physical quantities. The resulting model coincides with
the SU(N) solvable Sutherland model [14,15]. Similarly
the ith stage is defined by turning on the interaction A,
to the (i —l)th stage of the Hamiltonian. The interaction
A, acts on the particles with spins 0, = i, i + 1, . . . , K, so
that it generally afFects the spin sector of the model. We
will see that the construction of the present Hamiltoni-
ans is related to that for the FQHE [4,5,16]. Particularly
our classification of the hierarchy is quite analogous to
Jain's construction of the FQHE state out of the nonin-
teracting model (zeroth order corresponds to the v = N
integer QHE) [5].

We start with the two-body scattering by the potential
D, Ai(Ai+1) with D,s ——(I/rr) sin[a(x, xs)/L]. In t—he
asymptotic region (~x, —xs~ &) 1) this interaction gives
rise to the phase shift function Pl 1 = Ai sgn(k, —ks)
for two momentums A:, and k~. The stepwise form of
P( 1(k) is inherent in the 1/r systems [6]. Taking into
account the spin degrees of freedom in the interaction
D, Ai(Ai + P, ), the phase shift function is modified

into P( l + P p where P p comes from the noninteract-

ing SU(N) electrons; exp( —iP p) = lim, o(k, —ks—
ieP, )/(k, —ks —ie). The above phase shift function
completely determines the two-body S matrix for the
first family of the hierarchy, namely, for the integrable
SU(N) Sutherland model. Consider further the scatter-
ing by the interaction (1) between particles with arbi-
trary spins ri & P. We then find the phase shift function

to be P p(k) = (pir sgn(k). Consequently the two-body
S matrix for (1) is written down as

(2)

where P p(k) = (pir sgn(k) for n & P. Imposing the peri-
odic boundary conditions, consider now the many-body
scattering problem. In the ABA approach the many-
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body S matrix is conjectured to be decomposed into two-
body matrices like the ordinary BA [6,10]. This conjec-
ture works for all the integrable 1/r systems known so
far [6—10]. In the present model, the situation is a bit
more complicated since the phase shift P p(k) depends
on the internal degrees of freedom. Fortunately it turns
out that the treatment of P &(k) can be consistently em-(~)

bedded into the diagonalization procedure in the nested
Bethe ansatz (P &

takes the constant value in each step(&)

of nested BA). One consequently gets the ABA equations
for the N kinds of the rapidities,

k' 'L = 2 I,' '+ ) 8(k"& —k,' ')

+ ~, ) e(kI" —kI"),
l

(3)

for 2 & n ( N, where 8(k) = srsgn(k) and I is an
integer (or half-odd integer) which classifies the charge
(a = 1) and spin (n = 2, 3, . . . , N) excitations. The
additional phase shift A 7r sgn(k) results from the First
factor in (2). Here the number of electrons with spin n is
denoted as M for n = 1, 2, . . . , N (M~+i = 0), and the
number of the rapidities k is given by Q M . The

total energy is expressed simply as E = (1/2) P (k )z.
Let us consider the bulk properties in the thermody-

namic limit. We introduce the density function p (k)
for the rapidity k. . Converting Eqs. (3) and (4) into
the integral equations, one Ands that the integral ker-
nel is given by the b function, which results in the re-
markable fact that the density function has the constant
value in the region of [R: Q~+i ( ~k~ ( Q ] where

Qi & Qq » Qiv with Qiv+i = 0, while p (k) = 0

otherwise. The density function p (k) in the region R
thus takes the value

1
2=1 P2-

Pi+1' ' '

(5)

where we have used the new parameters p, = A, +2 —b, q.

Introducing the (~ —o;)x(~ —n) matrix T defined by

(T ),~
= p, 6,, —6,(,ail, (6)

for i, j = n, o.+1, . . . , w, the formula (5) is cast into a suc-

cinct form, p (k) = (1/2+)detT +i/detTi. The matrix
T plays a central role in the following analysis. Here we

introduce the important key quantity v, = 2+pe which
characterizes the hierarchical stage of the model,

(X. + 1) ) e(k& 1 —k,")+ 2 I& 1

L

= ) ) e(k& 1 —k& +'1), (4)
q=+1 j

jP1
P2 1

(7)

e i (k) /T =
~ k —p —ln(1 + exp [

—ez (k)]}
+A i ln(1 + exp[ —&i (k) /T] },

e (k)/T = )
q= —1,0, 1

(-1)'(1+A bqo)

x ln(1+ exp[ —e +q(k)]/T} (10)

for o. = 2, 3, . . . , N, with e~+q ——oo. The standard Som-
merfeld expansion gives the heat capacity at low temper-
atures, C/T = (x/3) P i(1/v ) with the velocity

v = ~n/2v„

where vz corresponds to the charge velocity and oth-
ers to the N —1 kinds of spin velocities. We note that
all the velocities take the same value irrespective of the
interaction strength. The Luttinger liquid relation be-
tween the compressibility and the charge velocity reads
7rr, vi ——v, /2, which essentially controls the critical be-
havior of the charge excitation [18]. It is now easy to
obtain the excitation spectrum using the fact that the ve-
locities (11) are all the same and the phase shift function
takes the simple form of sgn(k). The excitation energy is
thus classified in terms of the velocity v,

I

-~'Tiv~ + d'(Tiv) (12)

Note that the spacing of the charge rapidities k~ is en-
3

larged 1/v, times as large as the free fermion case due to
the repulsive interaction. This may imply that the effec-
tive volume of the electron is considered to be 1/v, times
as large as that for the free fermion. It will be shown
that v, coincides with the Filling factor of the FQHE if
we apply the model to the edge states by imposing the
chiral constraint.

We summarize the results for the static quantities
here. The ground state is given by setting Qi = Qq =

= Qiv. The corresponding energy is computed as
Eg/I = 7r n /6v„where n = g i n~ is the total elec-
tron density. Note that for the ith stage of the hierarchy,
each species of electrons has different densities in general:
ny ) ) ni ~ & ni = n, +~. ——n~. Prom the second
derivative of E~(n), we then get the compressibility in
terms of v„

&c = &c (8)
which depends linearly on n as in the noninteract-
ing case. Following the method developed by Yang and
Yang [17], the free energy F at Finite temperatures (T)
is determined by the formula F = —p, —(T/27r) I ln(l +
exp[ —ei(k)]}dk in terms of the dressed energy function
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where the matrix TP is defined in (6). Note that (12)
takes the modular invariant form consistent with the con-
formal invariance [19]. Here m is the N-component vec-
tor out of quantum numbers which specify the charge
(mi) and spin (m~, n & 2) excitations. The vector d con-
sists of quantum numbers which carry the current 2d~k~
with the Fermi momentum k~. Following the Bnite-size
scaling in conformal field theory [20], we easily get the
critical exponent g for correlation functions by the for-
mula g = AE/(nv/L) by choosing the appropriate quan-
tum numbers (for details see [10,21]).

We now wish to observe what happens if these interact-
ing electrons move through the 1D lattice. We introduce
a hierarchy of the lattice models [SU(N) / Jmod-el] with
1/r interaction,

a&p, i&j

where D,z
——(L/vr) sin[a(x, —~ )/L],

/ = (p~ —2+ b i), and the configurations with more
than one electron at every site are forbidden. The Hamil-
tonian (13) is a hierarchical extension of the model dis-
cussed in [14]. We note that the kinetic energy with the
hopping D, is simply given by E = const+ (1/2) Q. k
in the noninteracting case. The two-body 8 matrix for
this model is found to take the same form as (2), and
thus the ABA equations are given in the formulas (3)
and (4) replacing A~ by /~. As a result the bulk quan-
tities and the excitation spectrum are obtained in the
same expressions (8), (11), and (12) [22]. In this case,
however, there are two important constraints due to the
lattice effects: (a) a parameter / is to be an even in-
teger [23], and (b) the available range of the rapidity is

restricted to —vr & k. & ~ [24]. From (a) the parame-
ter v, defined in (7) becomes the fraction with the odd
denominator, which reveals the analogy to the FQHE
more explicitly. Moreover the constraint (b) provides a
rather striking result. As mentioned in (7) the spacing of
the charge rapidities is uniformly enlarged (1/v, times)
due to the repulsive 1/r2 interaction. This fact together
with the constraint (b) gives rise to a singular behav-
ior of the system at the electron density n = v, where
the normal fluidlike state breaks down for n & v, [25].
This phenomenon seems to imply that the singularity for
the noninteracting SU(N) lattice electrons at the density
n = N, where the semiconductor gap opens, is modified
into the singularity at the filling n = v, in the presence
of the 1/r interaction. If we turn off the interaction, the
critical density indeed becomes v, =

¹ It is instructive
to note that the above interpretation is quite similar to
that for the evolution of the FQHE state starting from
the integer QHE state with the fi11ing N [5].

In order to observe the relationship to the FQHE more
explicitly we now discuss the efFects of the chiral con-
straint for the metallic phase of the lattice model (13),
and confront the results with the chiral Luttinger liquid
for the FQHE in the disk geometry [12]. We first note

that the stepwise form of the phase shift function implies
that there is no marginal operator in the theory [7]. For
example, there is no logarithmic correction in the corre-
lation functions. As a consequence of the stepwise phase
shiR, therefore, the Umklapp scattering is irrelevant in
the present model [7,26], and we can separate right- and
left-going waves without changing the conformal dimen-
sions. By suppressing the excitations which carry the
current in (12), one thus gets the excitation energy for
the right- (or left-) going sector as

tTN
1 (14)

Using the finite-size scaling [20], we can read all the crit-
ical exponents for the correlation functions from (14).
The obtained results reproduce those for the chiral Lut-
tinger liquid for the edge states of FQHE with the filling
v, [12]. For example, by choosing mp = 1 (= 0) for
P ( o. (P & a), the critical exponent e for the momen-
tum distribution function is given as 8 = P . i /~

i(p~ —2+ 6~i). We emphasize here that the matrix
Ti is the key quantity which characterizes the critical
behavior of the present model both for the chiral and
nonchiral cases. In particular the efFective field theory
deduced from the spectrum (14) is essentially the same as
that for the chiral Luttinger liquid [12] in which the ma-
trix TP specifies the topological order of the bulk FQHE
with the filling fraction v, [27]. For example, the first
stage of the hierarchy with /i & 0 and /~ = 0 for n & 2,
the matrix T& characterizes the topological order for the
filling fraction v, = N/(N/i + 1) [5,13,28]. Similarly the
general case of the spectrum (14) produces the effective
field theory for the edge states of the hierarchical FQHE
discussed in [13]. We mention here that the formula for
the nonchiral case (12) may also be relevant to the edge
states of the FQHE in the case of the cylinder geometry
in which the right- and left-going waves in the opposite
edges are mixed through certain scattering processes [12].

We have seen so far that the above hierarchical mod-
els involve the fundamental properties expected for the
edge states of the FQHE with the filling fraction v, . We
stress that this correspondence is not accidental, the ori-
gin of which is clearly seen by observing the role played
by the phase shift function / 7r sgn(k). According to the
composite fermion approach to the FQHE [5] or the cor-
responding effective field theory [13,28], one may attach
t flux quanta to the electron in order to evolve the hier-
archy of the FQHE state. An important point is that at-
taching the / fiux quanta to particles in the FQHE corre-
sponds to introducing the phase shift function / 7r sgn(k)
in the present 1D systems, which can be plausibly repro-
duced by the 1/r interaction. This correspondence may
clarify why the family of the models (1) and (13) repro-
duces the evolution of a certain hierarchy of the FQHE
state so remarkably.

We conclude this paper by briefly mentioning a pos-
sible way to construct eigenfunctions which reproduce
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the ABA spectrum. Following the construction of the
eigenstates for the known I /r models, one naturally ex-
pects that the Jastrow-product wave function gives the
ground state, and the polynomials of Calmeyer-Laughlin
type describe excited states. In fact we have checked that
the Jastrow-product wave function out of the parameters
( p, g = Qi [e '*' —e '* [~s sgG provides the ex-
act same critical exponents deduced from (12) and (14),
where gG is the SU(N) completely projected Gutzwiller
wave function. So, the wave functions with polynomials
multiplied to Q are expected to give the set of eigenfunc-
tions for (1). The construction of the eigenfunctions,
which may ensure the ABA-spectrum microscopically,
will be reported elsewhere.
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knowledged. This work is partly supported by Monbusho
International Scientific Research Program.
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