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Directed Polymer Localization in a Disordered Medium
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The localization of a directed polymer onto an extended defect (such as a line or a plane) in
the presence of competing bulk disorder is examined. Based on scaling ideas and exact analysis
on a hierarchical lattice, we develop a new renormalization scheme to study the directed polymer
localization problem. We establish absence of delocalization transition for attractive columnar defect
in the marginal dimension d, = 2, and for attractive planar defect in d = 3. For columnar defect in
three dimensions, our simulations yield a localization length exponent v& ——1.8 + 0.6.

PACS numbers: 64.60.Fr, 02.70.—c, 05.40.+j, 74.60.Ge

Through various mathematically equivalent formula-
tions, a directed polymer (DP) sampling quenched ran-
dom bond or site energies unifies a diverse set of problems
in the theory of disordered and nonequilibrium systems
[1]. The DP model has been extended by including in the
Hamiltonian an additional line or plane potential along
the principal direction to describe, e.g. , wetting in the
presence of bulk disorder [2], pinning of a flux line by a
columnar defect or twin boundary in type-II supercon-
ductors close to the lower critical field H, i [3—5], inho-

mogeneous surface growth [6], and shock wave generation
in driven lattice gas with a blockage [7]. In an attractive
potential, a DP may either be localized, making only ex-
cursions of finite distance away from the potential well, or
be delocalized by energetically favorable configurations
in the whole d-dimensional disordered medium. Ther-
modynamically, the two states are separated by a phase
transition in that the (free) energy per unit length ex-
hibits a singularity at a critical depth 4, of the potential
well [8]. The case of a repulsive potential is also interest-
ing as it approximates that of two directed lines, which
is of concern in a many-line problem [9,10].

Despite previous theoretical and extensive numerical
studies [2,6,11—14], a coherent picture on the DP local-
ization transition is still lacking. Since temperature is ir-

relevant for the transition, perturbative renormalization
group (RG) analysis based on a high temperature expan-
sion [10] tends to obscure real physics. On the numeri-
cal side, direct determination of localization length close
to criticality in a transfer matrix simulation [2,11,14] is

severely limited by finite-size effects, making it difBcult
to draw definitive conclusions on the transition.

In this Letter we propose a RG scheme which combines
phenomenological scaling ideas with transfer matrix data
in constructing a flow equation for the analysis of the lo-

calization transition at zero or finite values of 6,. By
working within the critical regime, our method enables
one to determine the critical exponents using relatively
small systems in a numerical simulation. The method is

applied to a defect hierarchical lattice and to a line po-
tential at d = 2 and 3 and a plane potential at d = 3.
Our numerical results confirm a zero-temperature pertur-
bation theory whose predictions have hitherto been chal-

lenged by several other numerical studies [2,11,12,14].
Using a continuum description, a DP is specified by its

transverse displacements x(t) c B~ i along the principal
direction t. The energy of the DP is given by

H= dt — +gx.., t +Vxi

Here e is the line tension, rl(x, t) is a quenched random
potential with a short-range correlation, and V(x~) is
a potential due to an n-dimensional (n & d) extended
defect (e.g. , a line or a plane) located at x~ = 0, with

x~ being the component of x perpendicular to the defect.
In this paper we limit ourselves to the case where V has
a simple symmetric shape and extends over only a finite
range a, e.g. , V(x~) = —6 for [x~~ & a and V(x~) = 0
otherwise.

In the absence of the potential V, the configuration
which minimizes (1) has a typical transverse extension of
linear size ( which grows with the length t of the DP as

((t) t~, where ( is known as the roughness exponent
[1]. If (1) is minimized with one end of the DP fixed at
some position X., the resulting ground state energy has
a fluctuation of order 6'E(t) t with respect to either
different realizations of q or the end position ~. An at-
tractive potential V of finite depth 6 lowers the energy
of sections of the DP which fall in the region ~x~~ & a
by an amount 4 per unit length. This energy gain is not
sufficient to localize the DP completely within ~xi & a,
unless 6 is significantly larger than the typical variation
of g. Thus even if the DP is in a localized state, it may
still wander out of the potential well to take advantage
of low values of g within a transverse localization length

(, ) a. The typical span of such excursions along the t
axis is of the order of t„usually known as the correla-
tion length [8]. For (, )) a, which is the case close to
a continuous delocalization transition, the ground state
configuration inside the localization volume [x~[ & (, is
dominated by the disorder fIuctuation g instead of the
potential V.

With this picture in mind, we propose the following
RG scheme within the localization volume. On a given
length scale t along the DP, we compute the mean ground
state energy p(x&, t) for a DP of length t with one end
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fixed at a distance x~ from the center of the potential. At
x~ = 0, this energy difFers from its value po(t) at V = 0
by an amount A(t)—:po(t) —p(0, t). Since the transverse
fluctuation of the DP is limited to a distance ((t) t~,
we expect po(t) —p(x~, t) to fall ofF rapidly to zero for
x~ ) (. Thus if we choose t as the coarse-grain scale
along the DP and ((t) () a) the corresponding scale per-
pendicular to it, the effective potential then has a depth
A(t) and extends over a distance ((t) in the x~ direc-
tion. This potential now competes with the ground state
energy fluctuation b' E(t) t of DP sections contained
in the coarse-grained cells outside the potential well (or
barrier). The ratio of the two energies u(t) —= A(t)/hE(t)
then sets the strength for the renormalized potential. At
the transition, we expect u(t) to approach a constant u,'
as t —+ oo. On the localized side, u(t) —u,*reaches a value
of order 1 at t = t„at which point the renormalization
process is to be terminated. In terms of t„ the trans-
verse localization length (, and the condensation energy
e, —:limz ~ A(t)/t are given by

To demonstrate how the scheme works in practice, let
us first consider the case of a DP on a hierarchical lattice
[15] with a defect line, where the block transformation
described above can be implemented exactly. The hier-
archical lattice is constructed by an iterative rule. Upon
each iteration, a bond is split into 6 branches, each con-
taining two connected bonds. The case 6 = 2 is illus-
trated in Fig. l. A defect line is introduced following the
iteration rule for a defect bond as illustrated in Fig. 1(b)
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FIG. 1. First three generations of a hierarchical lattice at
branch number b = 2: (a) normal lattice; (b) lattice contain-
ing a line of defect bonds (dashed lines).

OO OO b

Pzzz(y)dy =
( dy dz (zP)z( Pzyz)) . (yz)

A similar relation holds for the ground state energy dis-
tribution PI, (x) on the defect lattice,

[16]. The energy of a defect bond has a distribution Po(x)
distinct from that of a normal bond, Po(x). The DP con-
figurations are the shortest paths that join the two ends
A and B; all have the same length t = 2" on a given
lattice. The energy of a DP is simply the sum of energies
of all the bonds it traverses.

The hierarchical construction of the lattice enables one
to find the ground state of the DP recursively. In partic-
ular, the distribution P), (x) of the ground state energy
on successive generations of the normal lattice satisfies
the recursion relation [15]

OO OO OO b—1

Pzzz(y)dy =
( dy dzPz(z)Pz(y —z)) ( dy dzPz(z)Pz(y —z)) (3b)

These equations serve as the basis of our numerical inves-
tigation of localization on the hierarchical lattice, which
is defined by the probability for the ground state to be
realized on the defect branch in the limit A: —+ oo.

Let pA, and 6g be the mean and standard deviation of
the ground state energy on the normal lattice at genera-
tion k, respectively, and pI, the mean ground state energy
on the defect lattice. In the limit AA, =

piy
—pk (( t)A; or

uA,
= A~/6), (( 1, it is possible to show that, if P), (x) =

Pk(x+ 4),), then P~+i(x) = PI,+i(x+ 261,/b) + O(u&).
Hence we have

uA+i —2 b 'ug + cu), + O(u), ) = P(ug),

where 6'),+i ——2 6A, is used [15]. The first term on the
right-hand side of (4) is easily identified as the result of
first-order perturbation theory where one ignores possi-
ble change of the ground state configuration, and hence it
gives an underestimate to uq+i (or equivalently, an over-
estimate to pA, +i). The coefficient c of the (postulated)
second term should thus be positive. Away from the per-

turbative regime, knowing uI, alone may not be sufficient
to determine uI, +q. In such a situation the full distribu-
tion Pg should in principle be considered for renormaliza-
tion. However, close to an unstable fixed point, a unique
mapping uA, +i = P(ug) is fixed on the fastest growing
direction. Near a stable fixed point the direction with
slowest convergence plays a similar role. Our numerical
investigation of (3) supports Eq. (4) and the existence of
a well-defined one-dimensional map after irrelevant pa-
rameters of the distribution Pp have been iterated away.

On the basis of (4), one can distinguish three generic
situations as illustrated in Fig. 2: (i) (t (0) ) 1 [Fig. 2(a)],
the fixed point uo —— 0 is unstable; (ii) ()))'(0) = 1

[Fig. 2(b)], uo ——0 is marginally (un)stable; (iii) 0 (
(t'(0) & 1 [Fig. 2(c)], u(') ——0 is stable. In case (i) a DP in
an attractive potential is always localized. At a vanishing
well depth 4, there is a diverging correlation length t,

(( with the exponent v~~
= ln2/in/'(0). On the re-

pulsive side, one expects a stable fixed point at u&. Inter-

2746



VOLUME 71, NUMBER 17 PH YSICAL REVIEW LETTERS 25 OCTOBER 1993

b&b , d(d

"k+i'

b=b, , d=d, b)b, ,
1.0

0
k

0 0 0.5—
0

(c)

FIG. 2. Three types of generic Bow diagrams describing the
localization transition from the map uA;+i = P(uq) (shown by
solid lines). Dashed lines give up+i = ug.
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estingly, the existence of such a fixed point implies that
any repulsive potential renormalizes to the same strength
urbE(t) on sufficiently large length scales t In .case
(iii), there is a localization transition at a critical depth
A, ) 0. On the localized side, t, (A —6,) ~~ with

vII = 1n2/in/'(u', ), where u,') 0 is the unstable fixed
point of the map as shown in Fig. 2(c). For u', (& 1, a
map of the form (4) yields vII

———ln p'(0)/ ln 2+0(u,' ).
In the marginal case (ii) with P"(0) ) 0, the fixed point
uo ——0 is stable on the repulsive side but unstable on the
attractive side. Integrating Eq. (4) yields

uit; up/(1 —cup k) = up/(1 —cup ln t/ ln 2).

Thus on the repulsive side ug —+ —c (In 2/lnt) as t =
2" ~ oo while on the attractive side it reaches a value
of order 1 at t = 8, 2 /'" . On the hierarchical lattice,
the marginal situation occurs at 6, = 2 ~~" & = 1.57.
For b & b, one is in case (i) while for b ) b, one is in case
(iii).

On a d-dimensional lattice, a result analogous to (4)
holds. In the absence of the potential V and after av-

eraging over different realizations of the disorder, the
probability for the two ends of a DP of length t to
be within a distance a in x~ space is of the order
of [a/((t)]" " = (tp/t)~(" "&, where we have assumed

((tp) = c & g(t). Integrating this probability yields the
following first-order estimate for the shift of the ground
state energy,

Z (t) = t,a[(t/t. )'-&("-")+ O(1)].

In terms of u(t), Eq. (6) leads to, for ((d —n) & 1,

"" "' (t)+ (t)'+&[ (t)'], (7)

where as before the coefflcient c of the (postulated)
quadratic term is taken to be positive on the premise
that Eq. (6) is a lower bound for A(t). That u(2t) can
be written as a function of u(t) is a statement of the RG.
Equation (7) sets the critical dimension d, for the rele-
vance of a weak potential at 1 —cu —((d, —n) = 0. Using
the values [1,17] ( =

s at d = 2, ( 0.620 at d = 3, and
the scaling relation w = 2g —1, one obtains d, (1) = 2 for
a line potential (n = 1) and 3 & d, (2) & 4 for a plane

FIG. 3. Scaled height shift u(t) versus t for the inhomoge-
neous single-step model (d = 2, n = 1). Data at the same
p are connected by a line. Inset: the map u(2t) = P[u(t)]
constructed using the data shown. Dashed line shows the
predicted slope 1.

potential (n = 2). For d & d, (n), the exponents vII and
v~ characterizing the diverging behavior t, 4 ~~ and
(, ~ 6 ~ are given exactly by (see also Ref. [14])

1
~tl =

1 —~ —((d —n)' 1 —cu —((d —n)') &J (S)

where we have used the scaling relation (2).
We have studied the DP localization by a line potential

in d = 2 and 3 and by a plane potential in d = 3 numeri-
cally in the context of inhomogeneous surface growth [6].
The reason for adopting such an approach is purely com-
putational. Simulations were performed on the single-
step model [18] for d = 2 and on the hypercube-stacking
model [17] for d = 3 using multisite coding techniques.
A line potential is introduced by making the growth rate
p at a particular column different from the value p for
the rest of the system. A plane potential is realized on
a row of defect lines. It has been shown that irreversible
growth of these surface models is completely equivalent
to transfer matrix calculations on suitable lattice versions
of the DP model at zero temperature [19].

The length t of the DP, measured in units of updates
per site in the growth model, is typically between 10 to
10 in our simulations. By choosing a system of linear
dimension L &) t&, finite-size effects in the transverse di-
rection can be eliminated. To suppress Buctuations in
A(t) (which corresponds to the height shift of the defect
column in the growth model), we have used a scheme
similar to the idea of damage spreading [20] by perform-
ing two simulations in the same bulk disorder g, one with
the extra line or plane potential and one without. For a
line potential, the simulation is repeated for 1000 to 2000
realizations of rl to reduce the error bar on A(t) to within
(3—4)go. In the case of a plane potential, averaging along
the plane reduces the fluctuation in A(t) significantly, so
that fewer realizations are necessary.

Figure 3 shows u(t)—:A(t)/6(t) against t from simu-
lations of the d = 2 single-step model at p = i and (from
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FIG. 4. u(2t) versus u(t) from simulations of the hyper-
cube-stacking model at p =

2 and a varying set of p & p. In
each case the same plotting symbol is used for data at a given
p. (a) Columnar defect. Lines of slope 1 (solid) and 1.2 and
1.4 (dashed) are drawn. (b) Planar defect. Dashed line has
the predicted slope 1.1.

bottom to top) a decreasing set of p between 0.47 and
0.4. (The case p ( p corresponds to an attractive po-
tential. ) Here b(t) is the root-mean-square fluctuation of
the surface at time t. In all cases u(t) grows (on average)
with t, indicating the absence of a transition. The inset
shows u(2t) against u(t), yielding a data collapse con-
sistent with Eq. (7). The coefficient c is approximately
0.24. The extremely slow increase of u(t) for p close
to p may account for the spurious diverging localization
length at a p & p as reported in previous numerical stud-
ies [2,11]. Take, for example, the bottom-most curve at
p = 0.47 which passes u 0.085 at t = 100. To reach
u(t, ) = 1, the length of the DP should be of the order
of t, 100 x 2 ~ ' 10 ". The corresponding trans-
verse localization length reaches (, = t~ 10 o at this
strength of the line potential.

Figures 4(a) and 4(b) show u(2t) against u(t) for at-
tractive line (n = 1) and plane (n = 2) potentials, re-
spectively. Again p is Axed at 2. In the case n = 1,
we found that A(t) saturates to a finite value before t
reaches 4096 for p & 0.35, while for p & 0.20 it grows
linearly with t after a transient period. The data shown
in Fig. 4(a) are consistent with an unstable fixed point at
u,* 0.6, which corresponds to a localization transition
at p, 0.29 + 0.01. The slope P'(u,") of the data set at
u,* is between 1.2 and 1.4. This gives v~~

= 2.9 +0.9 and
v~ = (v]] = 1.8 + 0.6. In the case n = 2, u(t) increases
with t for all values of p investigated up to p = 0.48, indi-
cating localization at any p (p. The slope of the data set
shown in Fig. 4(b) close to the origin is consistent with
the predicted value 2 & = 1.10. Thus the exponents
take the predicted values v~]

= 7.14 and v~ = (v~] = 4.43
as given by (8).

To conclude, we have shown that a RG scheme based
on phenomenological scaling ideas gives a simple descrip-
tion of DP localization by an extended defect in the
presence of bulk disorder. The validity and working hy-
potheses of the method have been demonstrated on the

hierarchical lattice. For an attractive line potential in
two dimensions, our simulations have shown that the
DP is localized at any Rnite depth of the potential well.
In three dimensions, an attractive planar defect of any
strength localizes the DP, while an attractive columnar
defect does so only when the potential it provides is suf-
ficiently strong.

We wish to thank J. Krug, T. Nattermann, and D.
E. Wolf for useful discussions. One of us (L.T.) grate-
fully acknowledges the use of computing facilities at
Forschungszentrum Julich. The work is supported in part
by the Deutsche Forschungsgemeinschaft under SFB 341.

* Also at Institute of Physics, 252028 Kiev, Ukraine.
[1] B. Derrida and H. Spohn, J. Stat. Phys. 51, 817 (1988);

D. S. Fisher and D. A. Huse, Phys. Rev. B 43, 10728
(1991), and references therein.

[2] M. Kardar, Phys. Rev. Lett. 55, 2235 (1985).
[3 L. Civale, A. D. Marwick, T. K. Worthington, M. A.

Kirk, J. R. Thompson, L. Krusin-Elbaum, Y. Sun, J. R.
Clem, and F. Holzberg, Phys. Rev. Lett. 67, 648 (1991).

[4] D. R. Nelson and V. M. Vinokur, Phys. Rev. Lett. 68,
2398 (1992).

[5 I. F. Lyuksyutov, Europhys. Lett. 20, 273 (1992).
[6 D. E. Wolf and L.-H. Tang, Phys. Rev. Lett. 65, 1591

(1990); in Groioth and Form: 1Vonli, near Aspects, edited
by P. Pelce (Plenum, New York, 1991).

[7] S. A. Janowsky and J. L. Lebowitz, Phys. Rev. A 45,
618 (1992).

[8] G. Forgacs, R. Lipowsky, and Th. M. Nieuwenhuizen,
in Phase transitions and Critical Phenomena, edited by
C. Domb and J. L. Lebowitz (Academic Press, London,
1991), Vol. 14, p. 135.

[9] D. R. Nelson and P. Le Doussal, Phys. Rev. B 42, 10 113
(1990).

[10] T. Nattermann, M. Feigelman, and I. Lyuksyutov, Z.
Phys. B 84, 353 (1991).

[11] J. Wuttke and R. Lipowsky, Phys. Rev. B 44, 13042
(1991); M. Zapotocky and T. Halpin-Healy, Phys. Rev.
Lett. 67, 3463 (1991).

[12] D. Kandel and D. Mukamel, Europhys. Lett. 20, 325
(1992).

[13] E. B. Kolomeisky and J. P. Straley, Univ. of Kentucky
report, 1992 (to be published).

[14] L. Balents and M. Kardar, Europhys. Lett. 23, 503
(1993).

[15] B. Derrida and R. B. Griffiths, Europhys. Lett. 8, 111
(1989).

[16] M. Kaufman and R. B. Griffiths, Phys. Rev. B 26, 5282
(1982).

[17] B. M. Forrest and L.-H. Tang, Phys. Rev. Lett. 64, 1405
(1990).

[18] P. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball,
Phys. Rev. A 34, 5091 (1986).

[19] L.-H. Tang, J. Kertesz, and D. E. Wolf, J. Phys. A 24,
L1193 (1991).

[20] H. E. Stanley, D. Stauffer, J. Kertesz, and H. J.
Herrmann, Phys. Rev. Lett. 59, 2326 (1987).

2748


