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Statics of a "Self-Organized" Percolation Model
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A stochastic "forest-fire" model is considered. Sites are filled individually at a constant mean rate;
also, "sparks" are dropped at a small rate k, and instantaneously burn up the entire cluster they hit. I
find nontrivial critical exponents in the self-organized critical limit k 0, contrary to earlier results of
Drossel and Schwabl. Spatial correlation functions and a site occupancy correlation exponent are mea-
sured for the first time. Scaling relations, derived by analogy to uncorrelated percolation, are used ex-
tensively as numerical checks. Hyperscaling is violated in this system.
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"Self-organized criticality" (SOC) [ll is a paradigm
for the way in which some strongly nonequilibrium sys-
tems develop self-similar (power-law) correlations in the
steady state, without the need to tune a parameter to a
special critical value. It might ultimately explain the ubi-
quity of fractal patterns in nature [2]. The best studied
model systems are various "sandpile" models on lattices.

A conservation law (as in "sandpiles") is commonly
considered essential for SOC. One school, analyzing field
theory versions of the models with stochastic driving
terms, concludes that power laws emerge in SOC much
as they do in the (trivial) case of noninteracting diffusing
particles; however, the exponents are determined by the
imposed current (which selects a direction) plus the non-
linearities [3,4]. A second school finds that a parameter
does need to be tuned to a critical value at which the
diff'usion constant diverges; however, this value is generi-
cally adopted throughout the system to satisfy the bound-
ary conditions with a finite current [5]. The model
presented below lacks conservation laws, but exhibits
nontrivial criticality as the control parameter approaches
zero. This is SOC in a weak sense, since small values of
the parameter could occur generically in nature.

Here I study a stochastic model evolving in continuous
time [6]. Each lattice site has two possible states, "filled"
or "empty, " and there are two dynamical rules: (i) Sites,
chosen at random, are filled with average rate unity per
site (if the site is already full, nothing happens); (ii) at an
average rate per site k (&1, "sparks" are dropped at ran-
dom; if a spark falls on a filled site, the entire cluster of
sites connected to it "burns" and is reset to empty. The
dynamics depends directly on connectivity, and the ex-
ponents have the same definitions as in percolation mod-
els (but different values), so I call this a "self-organized
percolation" model. One possible system for realizing a
similar model scenario would be a surface chemical reac-
tion with a very local autocatalysis [7] (involving neither
heat diffusion, atom diffusion, nor reconstructions).
Similar dynamic percolation models also arise in the
modeling of "patchiness" in ecology [8] (due to, e.g. , epi-
demics or real forest fires).

In the earlier "forest-fire" model [9,10], sites had a

third possible state, "burning. " Burning sites rapidly set
their neighbors burning at an average "spreading rate"
-w, and then become empty. The self-organized per-
colation model is just the limiting case w ~. Much
previous SOC work focused on the critical dynamics: If
w & ~, the duration of an avalanche or fire scales with its
size, so spatial power laws imply time power laws [1,9].
Here, however, we have eliminated such long time scales
since every fire is instantaneous. The longest other time
scale is the spacing between successive fillings of a site,
which is of order unity. Therefore, my focus here is on
the statics.

If we did let w & ~, then a fire could sustain itself
indefinitely without sparks (k =0) [9,10]. This case was
found to be uninteresting [10]: The steady state is just a
succession of "fire" fronts, which are ordinary curves
(with trivial fractal dimension D =1). On the other
hand, Drossel and Schwabl recently showed [11] that the
self-organized percolation model exhibits SOC (in the
weak sense) as k 0. They argued, analytically and nu-

merically, that the exponents have simple integer values.
However, the analytical argument of Ref. [11] is not val-

id, and my numerical results reported below —using k
roughly an order of magnitude closer to criticality than
theirs —show diAerent exponent values. This indicates a
new universality class which is quite diA'erent from ordi-
nary percolation.

Simulations and cluster distribution. —Simulations
were performed on a square lattice with N=L sites for
L =128,256,512 (results shown here are all at L =512)
with k = 1/2" down to 1/2048. A typical run was
—10 -10 passes, where a pass is one attempted fill step
per site.

Let m; =1 for an occupied site and 0 otherwise; thus
the occupied fraction is p=(m;) which has a maximum
value p, —= limk np(k). Define m;* to be the size of the
cluster to which site i belongs. Note that g;m;* =gtSt2,
where [StI are the sizes (number of sites) of all the dis-
joint clusters. Hence

g—=N ' S( = m;*
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Now, given an instantaneous configuration [m;], it is easi-
ly seen that (dm;/dt) = —km;*+ (1 —m;), where the
terms represent burning and filling, respectively. In the
steady state dm;/dt must average to zero [11],so
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Rg'{S)

= IO

kg =(1 —p) (2)

[equivalent to Eq. (1) of Ref. [11]]. The parameter k is
the same as "f/p" in Ref. [11];also, g =(o;) is the same
as "s" in Ref. [11]. Since p, &1 in d) 1, (2) implies
that g ~ as k 0. By (1), that is possible only if ar-
bitrarily large clusters appear, reflecting some sort of cri-
ticality.

Define y via g —k r. (I write exponents of the control
parameter k with a tilde to distinguish them from ex-
ponents of p, —p. ) Then (2) implies

(3)

n(s)-s 'f, (s/S .„) (4a)

with the approximate cutofI' at S~,„-k, for some X.
What I actually plotted (Fig. 1) and analyzed is

n & (S):—g, &sn (s), the cumulative burn-weighted dis-
tribution. From (4), its scaling form is

n* (S)—S ' F„g (Sk ) (4b)

Figure 1 also shows the average radius of gyration
Rg(s) as a function of cluster size s [averaged over all
clusters that fell in the bin (s,J2s)l. I assume that the

This trivial exponent relation is the source of most of the
nontrivial ones derived below. Numerically y = 1.03
~0.03 is found, providing a small check of the accuracy
of the results and the estimation of error bars. We also
define y by p, —p —k '/" equivalent, via (2), to the usual

Z —(p, —p) ". Numerically p, =0.411 ~ 0.002 (com-
pare p, = 0.39 in Ref. [11]).

Consider n(s), the number density (per site) of clusters
of size s. The probability that a spark burns up s sites is
n*(s)=sn(s—). This is one of several quantities written
with stars and called "burn weighted, " because they are
measured during burning and hence weighted by cluster
size (i.e., by m;* or s). Let us make the usual scaling hy-
pothesis
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FIG. l. Cumulative burn-weighted cluster frequency rl~& (S)
and mean squared radius of gyration Rs(S) as a function of
cluster size S. The solid curves are for spark rate k =2
= 0.48 x 10

clusters have fractal dimension D in the scaling regime,
i.e. , Rg —s ', implying a scaling form

s 2/+f (/k+) (5)

The values of r and X from scaling plots of (4b), and
of D from scaling plots of (5), are in Table I. Clearly
r&2, contrary to Ref. [11]. The reasoning which led to
D=r =2 in Ref. [11] [see their Eq. (5)] is clearly in-
correct: Ordinary percolation satisfies all their assump-
tions, but has nontrivial D, r. The misstep in Ref. [11] is
the assumption that (s) —=g~S~,„; really, @~S',„.

Correlation functions I have .—defined three diA'erent
correlation functions. Given a configuration [m;], let
K(i,j ) =1 (0) if sites (i,j ) are connected (unconnected).
Then, as in ordinary percolation, the connectivity cor-
relation function is K(r;/) —= (K(i,j)). Furthermore, the
burn-weighted con nectivity correlation function is
K*(r;J)= (m;*K(i,j )—) Finally, .long-range occupancy
correlations develop, because burning events simultane-
ously remove many nearby sites. So I define the site oc-

TABLE I. Critical exponents.

Exponent

V

rt =2 —1/v
D

gg =2 —D
r —2 =1 —1/X

A =Dv

1/y
gOCC

Measured

0.58(0.02)
0.411(0.02)
1.95 (0.025)
o.os(o.o 1)

o. 1 so(o.oos)
1.167(0.015)
o.41(o.o 1)

0.120(0.01 5)

Proposed

0.605
0.347
1.95
0.05

0.1525
1.180

0.41'
0.120'

Alternate

3/5 =0.60
1/3 =0.333

2
0

1/6 =0.167
6/5 =1.2

0.41'
0

U ncorrelated

24/43 =0.558
5/24 =0.208

91/48 = 1.896
5/48 =0.104
5/91 =0.055

91/86 = 1.058

18/43 =0.419

Ref. [1 ll

"v"—= 1/d =0.50
0

=d =2P
0

cs$it

'Set equal to measured value.
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cupancy correlation function K,(r;/) —= (m;mj) —p .
We expect the correlation functions to exhibit scaling

forms

(7)

i.e., y = (2 —ri) v, or [via (3)]

2 —
ri =1/v.

On the other hand, using (4) gives g=g, s n(s)—k ' which implies [via (3) again] the exponent
relation

X=(3—r) (12)

Note that, as k 0, K*(r) is divergent; however, its ra-
tio with @=K*(0),as in (10), approaches a limit.

We expect critical behavior g —k " (similarly for g*
and g,). Furthermore, we expect

Again, as in (7) we could write a burn-weighted sus-
ceptibility g* =+,K*(r)/A -g " using (7); on the oth-
er hand, g,K (r) =(Q~Si )/N so

g' =ps'n(s) gs'n(s) S-,„.
~ae = vcorr . (9)

g=+K(r)-g' &, (io)
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FIG. 2. Correlation functions for connectedness K(r), burn-
weighted connectedness K*(r)/g, and occupancy K,(r), for
k =2 "=0.48&10 . The dashed lines have the slopes as la-
beled, characterizing the initial power-law decay. The inset
shows the three correlation lengths as a function of spark rate k.
Where no error bars are shown for ((k), they are smaller than
the dots; g* and g have comparable error bars.

The measured correlation functions are shown in Fig. 2.
From scaling plots, v=0.60, v*=0.58, and v, =0.56.
These results are consistent with (9) and so I have put a
single value in Table I.

In fact, Fig. 2 includes correlation functions in both the
(10) and (11) directions, but these are indistinguishable.
Evidently, the correlations develop rotational symmetry
at criticality. The reason for this seems mysterious; it
cannot arise from a diffusion propagator (no conservation
law), and the model cannot be transcribed into a field
theory (the cluster burn step implies infinite-range in-
teractions).

Scaling relations and results As in e.—quilibrium sys-
tems, (6) implies a susceptibility sum rule:

The cutoff' radius of the scaling cluster distribution is
—g, so Sm„—g; but also 5,„—k [as in Eqs. (4)
and (5)1. Hence

D =2 —g*,
Dv=X.

(i 3)

(i4)

All in all, there are four independent exponents which I
will take to be D, v, y, and g, . The first six lines of
Table I give independent measurements of D, v, and the
four additional exponents related to them by the scaling
relations [(11)-(14)] [12]. Harmonizing these results
(forcing the scaling relations to hold) gave v=0.605
+ 0.01 and D =1.95+ 0.01 and the other values in

column 3. Note that the most precise values of v and D
are provided, via g and g*, by measuring of the correla-
tion functions. (Perhaps this would be useful in other
systems for which scaling relations are known. ) The last
two exponents are measured only one way so the scaling
relations do not provide any checks on them.

The possibility of D =2 cannot be completely ruled out,
so I also made an alternate harmonization (column 4)
with D=2 fixed at the start; the resulting value of v was
so close to 3/5 that I chose to present this rational value.
Independently, I chose to record a trivial value of g
since that too cannot be ruled out. The last two columns
give the exact exponent values for ordinary (uncorrelat-
ed) percolation, and the values proposed for (essentially)
the present model by Drossel and Schwabl [11] (their no-
tations given in quotes). The deviations of the harmon-
ized values from the measured ones are typically 1.5
times the estimated error; for the alternate harmonization
with D=—2, they are twice as large. By comparison, the
uncorrelated-percolation exponents give a bad fit; an even
worse fit is given by the proposed exponents of Ref. [11]
(except D).

The exponent 1/y is indistinguishable from that of un-
correlated percolation. However, v and D are both
moderately larger, so their product (and hence r) is
much larger than in the uncorrelated case. Of course,
q~, is totally different. (We must call it "~" in the un-
correlated case, since correlations die oA infinitely quick-
ly. )
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The hyperscaling relation is

8=2D —d —1/v=—2 —d+ ri
—2ri* =0. (is)

It is satisfied for ordinary percolation [use D= d ——P/v
and 1/v= y/v to put (15) in a more familiar hyperscaling
form]. But (15) is violated by our self-organized percola-
tion model (see Table I). To interpret (15), we must re-
view a property of uncorrelated percolation. Cut a box of
diameter l)) 1 out of the system. A cluster big enough to
span the box has SI —l sites; the number density of such
clusters is n & (St) —=g, &g,n(s) —(St) ' ' using (4a).
Thus, the total number of clusters in a box which are
large enough to span it scales as

(i 6)

using (12), (14), and (15) for the last equality. Thus, the
validity of (15) would indicate the spatial distribution of
clusters is homogeneous: At criticality, every box has a
spanning cluster (or a piece of a larger cluster). On the
other hand, the violation of (15) suggests a cluster distri-
bution like that of the "fractal curdling" process [2]:
Most boxes contain no large pieces; however, when they
do the fractal geometry is always the same.

I also investigated the one-dimensional self-organized
percolation model, which is not trivially soluble. The
correlation function K(r) does not decay exponentially,
but seems to have logarithmic corrections, somewhat
reminiscent of the "multifractal" scaling [13,14].

Socolar, Grinstein, and Jayaprakash [15] studied a toy
forest-fire model, in which my variable m; is replaced by
a continuous "height" u;(t), with a deterministic dynam-
ics. The height grows at a steady rate pg«„which is the
analog of 1/w in forest-fire models; a tree becomes burn-
able at u; = I (analog of my empty filled step); and it
catches fire spontaneously at u; =U (analog of my spark
step). The parameter 1/U is thus analogous to my k, and
I conjecture that SOC should occur in the limit pg„,„

0, U ~. The simulations of Ref. [15], which saw
no evidence of SOC, took only U =2.

I would like to thank P. Bak, M. E. Fisher, G. Grin-
stein, P. Kleban, 3. E. S. Socolar, and C. Tang for useful
discussions. This work was supported by DOE Grant No.
DE-FG02-89ER-45405 and by a Sloan Fellowship.

Note added. —Grassberger [16] has obtained (in my
notation) p, =0.4075, v =0.584(0.01), D =2, r —2
=0.15(0.02), X=1.08(0.02), and I/@=1.2 [these do not

agree with the scaling laws (12) and (14)]. Reference
[16] is a much larger simulation than mine (—10 times
as many steps/site, and 256 as many sites); however, I be-
lieve my quality is comparable, because unlike Ref. [16] I
used correlation functions, which seem to give more pre-
cise exponents. The observation in Ref. [16], p. 2087,
that "locally the state is nearly everywhere away from the
instability threshold, " seems related to my remarks about
the geometrical viewpoint on hyperscaling and fractal
curdling.
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