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Chain Formation in Low Density Dipolar Hard Spheres: A Monte Carlo Study
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The phase diagram of dipolar hard spheres has been determined by Monte Carlo simulation for re-
duced densities p* ranging from 0.02 to 0.3 and reduced temperatures T* from 0.08 to 0.25. For
T 0.15 the particles are found to associate to form chains which at the highest density are in a polar-
ized ferroelectric state.

PACS numbers: 61.20.Ja, 61.25.Em, 75.50.Mm

It is only recently that the phase diagram of strongly
interacting dipolar hard spheres has been investigated in
some detail by computer simulations [1-31. Both the low
and high density regions have been considered. The cal-
culations at low density [1], covering the density-tem-
perature range (in reduced units) 0. 1 ~ p* =pa 3 ~ 0.4
and T* ~ 0.18 [with T* =I/(p*), p* =(p2/kTa3)'i~
where p is the dipole moment, T the temperature, a the
hard sphere diameter, k the Boltzmann constant], were
directed towards the search of a liquid-gas transition.
Somewhat surprisingly, these recent results point to the
absence of such a transition in the (p, T*) region con-
sidered in contrast with a number of theoretical predic-
tions [4]. On the other hand, calculations at higher den-
sities [2,3] (p* ~0.6) have revealed that at sufficiently
low temperatures (or high dipole moments, @*~2.5) di-
polar hard spheres, as well as the related system of dipo-
lar soft spheres [5], can form an orientationally ordered
fluid phase. Furthermore, this ordered phase appears to
be ferroelectric [3,5]. In addition, stable ferroelectric
solid phases have been shown to occur as well [3,5].

The purpose of this Letter is to report Monte Carlo
(MC) calculations extending the previous ones to still
lower densities (p* =0.02-0.3) and temperatures (T*
=0.082-0.25). The most striking finding is the forma-
tion, at low temperature, of well defined chains which at
the highest densities considered are in a polarized fer-
roelectric state.

The MC simulations were performed in the canonical
ensemble for a system of N =500 particles in a cubic box
repeated periodically in space. The long range dipolar in-

teractions were accounted for using the Ewald method.
The total internal Ewald energy is the sum of periodic
pair potentials between the particles and a term propor-
tional to M, the square of the total electric dipole mo-
ment of the system [6]. This last term is combined with
the reaction field contribution of a continuous dielectric
medium of dielectric constant e' supposed to surround the
(infinitely) large sphere filled with the periodic replica of
the basic simulation cell. The resulting contribution to
the total Ewald energy is 2+M /(2e'+1)V, where V is
the volume of the system [6]. In the present study we
made the choice e'=~ which thus eliminates the contri-
bution to the energy arising from the depolarization field

and fully specifies the boundary conditions used in our
simulations [3].

A MC trial move combines displacement of a hard
sphere center and rotation of its dipole moment. The ac-
ceptance ratio varied between 0.2 and 0.5, depending on
temperature and density. Even at the lowest tempera-
tures considered substantial diffusion of the particles was

observed, a prerequisite for adequate sampling of phase
space.

The behavior of the system at low temperature is
characterized by association of the dipolar spheres to
form clusters which, by visual inspection, can be readily
identified as being chainlike. However, to characterize
quantitatively these chains a precise working definition of
a chain is required. Among the possibilities of using ei-
ther a sterically or an energetically based criterion, the
latter turned out to be the most adequate. This criterion
has the advantage to take into account the two main
features of chain formation in the dipolar hard sphere
system: proximity of neighboring particles and alignment
of their dipole moments. This last aspect would be fully
neglected by a criterion based on particle distances only.
Two spheres were considered to be bound if their poten-
tial energy was lower than a predetermined value U„
chosen to be —1.4(p*) in reduced units [note that the
lowest energy of a pair of dipolar hard spheres at contact
is —2(p*) ]. This choice of U, was guided by the
analysis of a number of instantaneous configurations of
the system and record of the average values of the first,
second, and third lowest pair energies Ei,E2,E3 of each
particle. Here we can already note that, when aggrega-
tion occurred, the values of E~ and E2 were close but con-
siderably lower than E3, indicating chain formation rath-
er than formation of more compact clusters (in which
case all three values of E would have been close). For ex-
ample, at p* =0.1, p* =3.5, one finds E ~

= —22. 16,
E2= —19.17, and E3= —3.56.

Chains were then identified as follows: For each parti-
cle i, in a given configuration, denote by E;~~' and E;P
the energies of the pairs (i,j) and (i,k) having the first
and second lowest energies. Choose a particle at random,
say i, and assume that it does not yet belong to a chain.
If E;j' & U„particle j will belong to the chain. Move to
particle j. If E~(' & U„particle l is accepted as the next
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TABLE I. Dipolar energy Ud//VkT, order parameter S, polarization P, average number of spheres in a chain nl, average per-

sistence length lz, and number of monomers of a system of 500 dipolar hard spheres as a function of density and temperature. The
error on Uq//V kT, S, and P is of the order of (2-3)%, on n& and l~ of the order of 10%. For all thermodynamic states the pressure is

nearly zero.
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member of the chain provided it does not yet belong to it
or to another chain. Otherwise the energy criterion is
checked for E~ . The process is continued until the
chain stops (energy criterion not satisfied or neighbor be-
longing already to a chain). Then move back to the ini-
tial particle i and check the energy criterion for E;„
(second lowest pair energy) in order to grow the chain
in the opposite direction. We note that the preceding
chain definition, based on consideration of only the first
two lowest pair energies, obviously does not allow for
branched chain configurations. In fact, in the density re-

gion over which the chain concept seems meaningful,
such configurations would occur only very rarely.

Having adopted this definition of a chain, we calculat-
ed the average number of spheres, nI, in a chain and a
(average) persistence length from

flI 2

II = 2 (ei'ei+I )
k I

averaged over all chains with n& & 10. In Eq. (1),
e; =r;+ ~

—r; denotes a vector joining two successive hard
sphere centers and nI the number of spheres in a chain.
Averages were taken over independent configurations
spaced by 2000 trial moves/particle.

Furthermore, we calculated an order parameter 5
defined as the average value of the largest eigenvalue of
the second rank tensor
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value of Q.
Results for the internal energy, order parameter, polar-

ization, average number of particles in a chain, and per-
sistence length of the diA'erent thermodynamic states are
summarized in Table I. When supplemented with

snapshots of instantaneous configurations of the system,
the following behavior becomes apparent as a function of
density and temperature.

Formation of chains occurs most strikingly in the den-

sity region p* =0.05-0.2 and for temperatures T* &0.15.
In this region the density is sufticiently low for the

Q =—Q —(3u;u; —I)1 1
(2)

and a possible polarization of the system from

P= Ug'd (3)

where i; is a unit vector in the direction of the dipole mo-
ment p and d the director of the system defined as the in-

stantaneous eigenvector associated with the largest eigen-

FIG. 1. Snapshot of a configuration of 500 dipolar hard
spheres at p* =0.1, T* =0.0816 (p* =3.5) (projection of the
dipole moments on the y-z plane of the periodic simulation
cell). The association of the dipolar spheres into chainlike
structure is clearly visible. The dipole moments are represented
by thin lines of length 0.8o. The hard sphere centers are in the
middle of the lines. The symbol for the head of the dipole
moments varies with number of spheres nI in the chain.
Open circles: 1 ~ n~ & 10; squares: 10 ~ n~ & 20; triangles:
20 ~ nI & 30; solid circles: nI ~ 30. Distances are in unit of a.
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FIG. 2. Three-dimensional graph of an instantaneous
configuration of 500 dipolar hard spheres at p* =0.1,
T*=0.0816 (p* =3.5). Chains with diff'erent numbers of
spheres are represented with diAerent gray levels.

method of chain analysis described above to be applicable
in an unambiguous way. Figure 1 shows an instantane-
ous configuration of the dipolar spheres at p =0.1,
T* =0.0816 (p* =3.5) projected on the y-z plane of the
simulation box; a three-dimensional view of the system is

given in Fig. 2. At this temperature (T*=0.0816) the
average number of spheres in a chain (which, for short,
we will call chain length, although it should be stressed
that the spheres in a chain are not strictly in contact) is
—25; a chain may comprise, however, as many as a hun-

dred spheres. Monomers are absent. (A detailed analysis
of the distribution of chain lengths will be postponed until

publication of a fuller description of this work. ) It is im-

portant to remark that a chain configuration evolves con-
siderably during the MC run. A specific chain does not

keep a constant length but can grow, break, and reform.
In the density range p* =0.05-0.2 the average chain

length does not vary appreciably (at fixed temperature),
only near p* =0.02 does it start to drop more rapidly due

to an increase of the number of small chains and mono-

mers. The persistence length l~ is constant (l~-7) at
p* =0.2 and 0. 1 (cf. Table I) then decreases to 3 for

p -0.05 indicating a more winding nature of the chains.
At all densities considered the chain phase disappears
rather abruptly at T*-0.15 giving rise to an ordinary
IIuid phase (cf. Fig. 3). The diA'erence in phase behavior
of the system on either side of the isotherm T*=0.15 is

also quite visible on the values of the internal energy (cf.
Table I). At low temperature the energy of the system is

remarkably constant with density (at a given tempera-
ture) and is dominated to within 90% by intrachain
(nearest neighbor) pair interactions, while at high tem-

perature the decrease of energy with density is pro-

FIG. 3. Snapshot of a configuration of 500 dipolar hard
spheres at p =O. l, T* =0.25 (p =2.0) (projection of the di-

pole moments on the y-z plane of the periodic simulation cell).
Symbols are as in Fig. 1.
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FIG. 4. Snapshot of a configuration of 500 dipolar hard
spheres at p* =0.3, T* =0.0816 (projection of the dipole mo-

ments on the y-z plane of the periodic simulation cell). The sys-

tem is polarized along the z axis of the simulation cell. The
symbols are as in Fig. 1.

nou need.
At p* =0.3, the higher density of the system renders

our definition of chains more dubious to apply. Nonethe-
less, for temperatures T* (0.15 we identify chains of
lengths comparable to those determined at lower density
(cf. Table I). A striking diA'erence with the low density
case is, however, that the system is now polarized (cf.
Fig. 4). This finding is consistent with the ferroelectric
behavior of the system observed previously [3] at still

higher densities [although at these higher densities
(p* )0.7), obviously, no chains can be identified anymore
in the system]. Because of the polarized nature of the
chains these stretch more linearly than in the low density
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case, a result corroborated by the larger value of the per-
sistence length (cf. Table I). From Table I it is apparent
that both chain formation and polarization vanish at tem-
peratures T*~0.15. One also sees that a weak reminis-
cence of polarization is also present at lower densities.
Notice that a value P=0.4 corresponds to a low value of
the order parameter S since for a uniformly polarized
state P is roughly ~ JS.

The physical system which approaches most closely the
present highly idealized one is maybe the ferrofluid sys-
tem. Ferrofluids are colloidal suspensions of magnetic
particles (50-100 A) in various carrier liquids [7]. At
low temperatures ferrofluids are known to aggregate to
form chains [8] although this requires the presence of an
external magnetic field. Our results seem to indicate that
such formation could be spontaneous for adequate values
of the magnetic moments of the particles.

We finally remark that in the (p, T) domain investigat-
ed in the present work (extending appreciably that con-
sidered in Ref. [1]) no tendency for a liquid-gas transi-
tion is evident. For systems undergoing a liquid-gas tran-
sition, as is, for instance, the case for the Stockmayer po-
tential, the phase diagram is possibly even more complex
than for the present model due to an interplay of the ten-
dencies of chain formation and liquid condensation [9].

A full account of the phase diagram of dipolar hard
spheres including extension to a wider density-temper-
ature domain as well as a theoretical analysis will be

given in a future publication.
Laboratoire de Physique Theorique et Hautes Energies

is a laboratoire associe au Centre National de la Re-
cherche Scientifique.
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