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Statistical Balance of Vorticity and a New Scale for Vortical Structures in Turbulence
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The balance of one-point and two-point statistical characteristics of vorticity is considered on the basis
of the Navier-Stokes equations. It is shown that within the inertial range of scales (LRe 3t «r«L, L
external scale, Re Reynolds number) there is a physically distinguished scale l, —L Re 3i' . The bal-
ance of vortical correlations with scales r ~ l, is directly affected by the large-scale motion. I, is a natu-
ral length scale for the "vortex strings, " observed experimentally and numerically in three-dimensional
turbulent flows. The twist of vortex lines in the internal structure of vortex strings is also brieAy dis-
cussed.

PACS numbers: 47.27.Gs

The dynamics of turbulent flows is better understood in

terms of local characteristics of motion [1],which have a
mechanism of self-amplification. For three-dimensional
turbulence the local characteristic is the vorticity field
and self-amplification is due to the effect of stretching of
vortex filaments [2,3]. For two-dimensional turbulence
the local characteristic is the vorticity gradient [4]. We
use the concept of self-amplification, because in both
cases the deformation tensor, responsible for ampli-
fication, is expressed in terms of local characteristics
[3-7]. The result of conditional averaging of the defor-
mation tensor with fixed vorticity indicates a definite sta-
tistical tendency to the formation of "vortex strings" in

three-dimensional turbulence [6,7]. Laboratory observa-
tion of such elongated vortices was reported in Ref. [8]
(see also references therein for numerical experiments).

It seems natural to assume that the characteristic
length of vortex strings depends on the external scale L
and Reynolds number Re of the flow. It was shown [7]
that for high Re the eA'ect of large-scale motion on the
statistical balance of enstrophy is —Re and can be
neglected. %e will show below that the same is true for
high order one-point characteristics of vorticity. Howev-
er, the balance of vortical correlations within the inertial
range [Eq. (17)] is affected by the large-scale motion.
This leads to a new characteristic scale, which we associ-
ate with vortex strings.

Consider equations for a three-dimensional vorticity
field in an incompressible fluid, which follow from the
Navier-Stokes equations:
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Here, v;, co;, and f; are correspondingly velocity, vortici-
ty, and external force, e;Jk is the unit antisymmetric ten-
sor, and v is kinematic viscosity. Assume that turbulent
flow is statistically stationary, homogeneous, and isotro-
pic. The energy, supplied by large-scale random forces,

dissipates due to viscosity with the mean rate,

e =(f;v;) = v(co ) . (3)

Here ( ) means statistical averaging and all fields are tak-
en at the same space-time location. Assume also that
forces are Gaussian and ct correlated in time, which gives
the formula [9,10]
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Here R is any functional of vorticity field, @;~ is the space
correlation tensor of p;, 8 corresponds to functional
derivative, and all fields are taken at the same time.

By multiplying (1) with co;co" (n ~ 0), averaging, using
(4), and simple manipulations, we get the statistical bal-
ance of one-point characteristics of vorticity:
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For n=0 it is just a balance of enstrophy [7]. The left-
hand side of (5) represents the efl'ect of stretching, the
first term on the right-hand side (rhs) of (5) is viscous
smoothing, and the last term corresponds to the influence
of large-scale motion, supplying energy. Using (2), we
have

(6)

where Fj(r) is the space correlation tensor of f; and the
prime indicates differentiation over r Formula (4) .with
substitution f; and v; instead of p; and co; gives [9]
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Function F(r) is even (isotropy), thus
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@;;(0) =6eL, L = —F"(0) [F(0)]
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where L is the natural external scale for this turbulent
liow [9] and Re is the corresponding Reynolds number.
This result can be obtained by dimensional argument for
a broad class of large-scale forces. Taking into account
that the characteristic value of vorticity and the velocity
gradient is —e'j v 'j (3), we see that the relative con-
tribution of large-scale motion in (5) is —Re and can
be neglected for Re»1. Thus the balance of one-point
statistical characteristics of vorticity, including high order
moments, is not sensitive to the large-scale motion, pro-
vided that the level of energy dissipation is supported (3)
and Re»1. This conclusion is also important as addi-
tional justification of the equation for the conditionally
averaged vorticity field 0;(r,ai) a distance r from a point
with fixed vorticity ru [5-7]. The left-hand side of (1),
being conditionally averaged with fixed eo at the same
point, gives zero, which is proven by multiplying it with
A(///)///; with arbitrary function A(///) and averaging un-
conditionally [compare with [7], formulas (7)-(10),
where proof is slightly different]. The first two terms on
the rhs of (1) give the integral equation (or relation) for
0;. The last term (being conditionally averaged with
fixed co at the same point), according to (4), (5), and (8),
is acting as an operator,

(v/a/ka/ & =0
rJ

gives

rA'+ 2A +B+C =0,
rB' —B+rC' —C+ rD'+ 2D =0

(i 4)
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(prime indicates differentiation). Thus, only two scalars,
say 8 and C, are independent. From (11)-(13)we ob-
tain an expression with only one scalar:

(vk///;) was called the "vorticity transport" tensor and was
studied for a general nonhomogeneous turbulent flow
[11]. The tensor a;Jk represents self-induced generation
of vorticity correlations due to combined convection and
stretching eAects. Because the velocity field is an integral
over the vorticity field, the tensor a;Jp is an integral over
the three-point correlations of vorticity. The tensor Q;J
represents the influence of large-scale motion and we used
(4) to evaluate this tensor.

The tensor a;Jk (11) is a sum of four moments of third
order, which involve a product of two components of vor-
ticity at diAerent points and one component of velocity at
one of these points. For isotropic turbulence we have the
general expression

(v////k ///J') =A b/k nJ +BSJnk + C8kJ n; +D'n; nJ nk, (13)

where n; =r;r ' and scalars 2, . . . , D depend on r. The
condition of solenoidality
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Here Q;z is the correlation tensor of vorticity. The tensor
a;p is the vorticity flux, which combines convection and
stretching of vortex filaments. The statistical mean value

and can be neglected for large Re. Let us note that the
balance of one-point characteristics of vorticity (5) in-

volves integrals of the two-point characteristic of vorticity
0;(r, r/i). The general expression obtained in [5,7] for the
field 0;(r, m) reveals a twist of vortex lines, correspond-
ing to the balance between stretching and viscous smooth-
ing [see formula (23) and below in Ref. [7]]. This sta-
tistically important twist probably contributes to the heli-
cal shape of explosion of vortex strings, when they be-
come unstable [8].

Now we turn to the balance of two-point characteris-
tics of vorticity, which involves integrals of three-point
vorticity characteristics. Multiply (1) with r//J' and aver-
age (prime now indicates that field is taken at a point
x'=x+r). Symmetrization over (i,j) and use of homo-
geneity and isotropy gives

Here we used antisymmetry of tensor (13) with respect to
vector r.

Consider the inertial range of scales

I,= v 6 =L Re «r «L, (17)

where l, is the Kolmogorov interna1 scale. The variability
of l„due to intermittency [12-14], is not essential for the
following analysis. By using solenoidality (2) and (8) we
obtain

AQ// 6 ( v/v)/2 6 ((v/ v/) ) . (i 9)

Now we can use the "2/3 law" [13] (neglecting small in-
termittency correction):

((v —v;) '& = 3' co(er ) 'j', co ——2 . (2o)

Here we indicated the empirical value of constant co for
the longitudinal structural function (which corresponds to
the projection of velocity increment on r). Substitution
of (20) into (19) gives

/2~ r + a ——2;~=as r, a= 243 co

QJ(r) =28/eL, r «L.
Let us evaluate the first term on the rhs of (10). By us-
ing the definition of vorticity (2), we have
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By using isotropy and solenoidality, we finally get

An;j(r) =2ae t r ' (8"—
2 nin ). (22)

ra'+ a =2ave r + eL r,
ra' —Q =5avE r

(23)

(24)

It is easy to see that these two equations are consistent
and give a unique solution (without arbitrary constant):

For statistically stationary turbulence, substitution of
(16), (18), and (22) into tensor equation (10) gives two
equations for the scalar a(r):

experiments, and further analysis are needed in order to
understand more deeply the dynamics and statistics of
vortex structures with characteristic scale l, . The time of
formation of vortex strings (until they became unstable)
can be estimated as r, —l, (el, ) 'i —TRe 't, where
T-L e ' is the external time scale.

This work is supported by the U.S. Department of En-
ergy under Grant No. DE-F603-91ER14188 and by the
University Research Initiative under Grant No. ONR-
N00014-92-I-1610.

a(r) = —', ave' 'r -' '+ —,
' eL 'r. (25)

1, =(3a) ' LRe ' =1.66LRe (26)

This result shows that dynamics of vortical structures
in the inertial range is not a simple cascade process, but
involves intermediate characteristic scale. It seems that
l, is a natural length scale for the vortex strings indicated
above. A previous candidate for this role was Taylor's
microscale X—L Re '/ Ho~ever from the pres
analysis we conclude that scale ) does not appear in the
dynamics of vortical correlations. For moderate Re, the
difference between these two scales is not big: l, /A,

—Re'i . Detailed observations for larger Re, numerical

This equation represents balance between self-induced
generation of vorticity correlations, viscous diffusion, and
inhuence of large-scale motion. When we approach the
internal scale l„, Eqs. (10) and (25) turn into the balance
of enstrophy and, as was shown above, the efIect of
large-scale motion for large Re is negligible: —Re
We recover this result by comparing two terms in the rhs
of (25) for r —l„. However, within the inertial range (17)
these two terms become comparable (and compensate
each other) at the scale
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