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Statistical Balance of Vorticity and a New Scale for Vortical Structures in Turbulence
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The balance of one-point and two-point statistical characteristics of vorticity is considered on the basis
of the Navier-Stokes equations. It is shown that within the inertial range of scales (LRe "< r <L, L

external scale, Re Reynolds number) there is a physically distinguished scale /;~L Re

—3¥10 The bal-

ance of vortical correlations with scales r = /; is directly affected by the large-scale motion. /s is a natu-
ral length scale for the “‘vortex strings,” observed experimentally and numerically in three-dimensional
turbulent flows. The twist of vortex lines in the internal structure of vortex strings is also briefly dis-

cussed.

PACS numbers: 47.27.Gs

The dynamics of turbulent flows is better understood in
terms of local characteristics of motion [1], which have a
mechanism of self-amplification. For three-dimensional
turbulence the local characteristic is the vorticity field
and self-amplification is due to the effect of stretching of
vortex filaments [2,3]. For two-dimensional turbulence
the local characteristic is the vorticity gradient [4]. We
use the concept of self-amplification, because in both
cases the deformation tensor, responsible for ampli-
fication, is expressed in terms of local characteristics
[3-7]. The result of conditional averaging of the defor-
mation tensor with fixed vorticity indicates a definite sta-
tistical tendency to the formation of “vortex strings” in
three-dimensional turbulence [6,7). Laboratory observa-
tion of such elongated vortices was reported in Ref. [8]
(see also references therein for numerical experiments).

It seems natural to assume that the characteristic
length of vortex strings depends on the external scale L
and Reynolds number Re of the flow. It was shown [7]
that for high Re the effect of large-scale motion on the
statistical balance of enstrophy is ~Re ~*? and can be
neglected. We will show below that the same is true for
high order one-point characteristics of vorticity. Howev-
er, the balance of vortical correlations within the inertial
range [Eq. (17)] is affected by the large-scale motion.
This leads to a new characteristic scale, which we associ-
ate with vortex strings.

Consider equations for a three-dimensional vorticity
field in an incompressible fluid, which follow from the
Navier-Stokes equations:

dw; dw; _ Ov; o,
to = +vAw;+¢;, ——=0, (
o1 Uk axx FY Wit VAw; t+ ¢ ax; (1)
LN T/ ST/
Wi = €ijk axj s Qi =€ijk an s ox; 0. )

Here, v;, w;, and f; are correspondingly velocity, vortici-
ty, and external force, €;jx is the unit antisymmetric ten-
sor, and v is kinematic viscosity. Assume that turbulent
flow is statistically stationary, homogeneous, and isotro-
pic. The energy, supplied by large-scale random forces,
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dissipates due to viscosity with the mean rate,
e=(fiv;)=viwd . 3)

Here ) means statistical averaging and all fields are tak-
en at the same space-time location. Assume also that
forces are Gaussian and § correlated in time, which gives
the formula [9,10]

. . =i 3.'%.. " 6R[‘0(')]
(6:)R@()]) zfd X'y (x X)<m6wj(x') >

(4)

Here R is any functional of vorticity field, ®;; is the space
correlation tensor of ¢;, & corresponds to functional
derivative, and all fields are taken at the same time.

By multiplying (1) with w;0" (n = 0), averaging, using
(4), and simple manipulations, we get the statistical bal-
ance of one-point characteristics of vorticity:

e ETRE >
Oxx ki Oxy Ox
D; (0™ . (5)

3+n
6

For n=0 it is just a balance of enstrophy [7]. The left-
hand side of (5) represents the effect of stretching, the
first term on the right-hand side (rhs) of (5) is viscous
smoothing, and the last term corresponds to the influence
of large-scale motion, supplying energy. Using (2), we
have
2
(D,-,-(r)=—a—F"2(Q=—F"(r)—lF'(r), F=Fy , (6)
Grk r
where Fj;(r) is the space correlation tensor of f; and the
prime indicates differentiation over r. Formula (4) with
substitution f; and v; instead of ¢; and w; gives [9]

i (x)) =3 F;(x'—x), F;(0)=2¢. @)

Function F(r) is even (isotropy), thus
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®;(0)=6¢L "2, L 2=—F"(O)IFO)]',

(®)
Re=61/3L4/3V—1 ,
where L is the natural external scale for this turbulent
flow [9] and Re is the corresponding Reynolds number.
This result can be obtained by dimensional argument for
a broad class of large-scale forces. Taking into account
that the characteristic value of vorticity and the velocity
gradient is ~¢'/2v ™12 (3), we see that the relative con-
tribution of large-scale motion in (5) is ~Re ~*2 and can
be neglected for Re>> 1. Thus the balance of one-point
statistical characteristics of vorticity, including high order
moments, is not sensitive to the large-scale motion, pro-
vided that the level of energy dissipation is supported (3)
and Re>1. This conclusion is also important as addi-
tional justification of the equation for the conditionally
averaged vorticity field Q;(r,) a distance r from a point
with fixed vorticity @ [5-7]. The left-hand side of (1),
being conditionally averaged with fixed @ at the same
point, gives zero, which is proven by multiplying it with
A(w)w; with arbitrary function 4(w) and averaging un-
conditionally [compare with [7], formulas (7)-(10),
where proof is slightly different]. The first two terms on
the rhs of (1) give the integral equation (or relation) for
Q;. The last term (being conditionally averaged with
fixed @ at the same point), according to (4), (5), and (8),
is acting as an operator,

$i=¢€L -2 9 ) ()]
Bw,-
and can be neglected for large Re. Let us note that the
balance of one-point characteristics of vorticity (5) in-
volves integrals of the two-point characteristic of vorticity
Q,;(r,m). The general expression obtained in [5,7] for the
field Q;(r,w) reveals a twist of vortex lines, correspond-
ing to the balance between stretching and viscous smooth-
ing [see formula (23) and below in Ref. [7]1]. This sta-
tistically important twist probably contributes to the heli-
cal shape of explosion of vortex strings, when they be-
come unstable [8].

Now we turn to the balance of two-point characteris-
tics of vorticity, which involves integrals of three-point
vorticity characteristics. Multiply (1) with wj and aver-
age (prime now indicates that field is taken at a point
x'=x+r). Symmetrization over (i,j) and use of homo-
geneity and isotropy gives

BQ,»J- aa,'jk
2Ry g TRk 0,

Y oy 2vAQ ;i +Q;j (10)
Qi (1) =(w;0)), ajxt) =(cjw;—oxw)), (1)
Cik =UkW; — LWk, Q,‘j=2<¢i(l)}> =d),'j(l‘) . (12)

Here Q;; is the correlation tensor of vorticity. The tensor
oix is the vorticity flux, which combines convection and
stretching of vortex filaments. The statistical mean value

(vgw;) was called the “vorticity transport” tensor and was
studied for a general nonhomogeneous turbulent flow
[11]. The tensor a;j represents self-induced generation
of vorticity correlations due to combined convection and
stretching effects. Because the velocity field is an integral
over the vorticity field, the tensor a;j is an integral over
the three-point correlations of vorticity. The tensor Q;;
represents the influence of large-scale motion and we used
(4) to evaluate this tensor.

The tensor a;jx (11) is a sum of four moments of third
order, which involve a product of two components of vor-
ticity at different points and one component of velocity at
one of these points. For isotropic turbulence we have the
general expression

<U,'wk (l)j’> =A6[kﬂj+35ijnk + C5kjn,- +Dn,-njnk . (] 3)
where n; =r;r ! and scalars A4, ...,D depend on r. The
condition of solenoidality

i(v,-wkw‘) =0 (14)

Grj 4
gives

rA'+24+B+C=0,

(15)

rB'—B+rC'—C+rD'+2D=0

(prime indicates differentiation). Thus, only two scalars,
say B and C, are independent. From (11)-(13) we ob-
tain an expression with only one scalar:

(16)

Here we used antisymmetry of tensor (13) with respect to
vector T.
Consider the inertial range of scales

aijk (r) =a(r) (26;jnx — Sikn; — 8jxni), a=B—C.

an

where /, is the Kolmogorov internal scale. The variability
of /,, due to intermittency [12-14], is not essential for the
following analysis. By using solenoidality (2) and (8) we
obtain

Qij(l') =20;j€L _2, r<rL.

lv=v3/46‘1/4=L Re < r<L,

(18)

Let us evaluate the first term on the rhs of (10). By us-
ing the definition of vorticity (2), we have

(19)

Now we can use the “2/3 law” [13] (neglecting small in-
termittency correction):

(o — o)=L coler)??, co=2.

AQ;= '—AZ(U,'U,") = ;_A2<(U,"_ U,‘)2> .

(20)

Here we indicated the empirical value of constant c¢q for
the longitudinal structural function (which corresponds to
the projection of velocity increment on r). Substitution
of (20) into (19) gives

220
a= 3 co~=138.

21

A‘QU =£162/3r - 10/3,
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By using isotropy and solenoidality, we finally get

AQ;(r) =2ac?Pr _l0/3(3ij -3 nin;) . (22)

For statistically stationary turbulence, substitution of
(16), (18), and (22) into tensor equation (10) gives two
equations for the scalar a(r):

ra'+a=2ave?’r TP+ eL "2, (23)

ra' —a=5ave¥3 "3 (24)

It is easy to see that these two equations are consistent
and give a unique solution (without arbitrary constant):

a(r)=—32ave?3r P+ LeL 72, 25)

This equation represents balance between self-induced
generation of vorticity correlations, viscous diffusion, and
influence of large-scale motion. When we approach the
internal scale /,, Eqs. (10) and (25) turn into the balance
of enstrophy and, as was shown above, the effect of
large-scale motion for large Re is negligible: ~Re "2,
We recover this result by comparing two terms in the rhs
of (25) for r~1,. However, within the inertial range (17)
these two terms become comparable (and compensate
each other) at the scale

I;=03a)¥'%L Re ~¥10~ 1 66L Re ~ /10, (26)

This result shows that dynamics of vortical structures
in the inertial range is not a simple cascade process, but
involves intermediate characteristic scale. It seems that
I is a natural length scale for the vortex strings indicated
above. A previous candidate for this role was Taylor’s
microscale A~LRe 2. However, from the present
analysis we conclude that scale A does not appear in the
dynamics of vortical correlations. For moderate Re, the
difference between these two scales is not big: /A
~Re'5. Detailed observations for larger Re, numerical
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experiments, and further analysis are needed in order to
understand more deeply the dynamics and statistics of
vortex structures with characteristic scale /;. The time of
formation of vortex strings (until they became unstable)
can be estimated as t,~/;(el;) ~3~TRe ™5, where
T~L*3¢ "3 is the external time scale.
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