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Numerical Chaos, Roundofl' Errors, and Homoclinic Manifolds
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The focusing nonlinear Schrodinger equation is numerically integrated over moderate to long time in-
tervals. In certain parameter regimes small errors on the order of roundoA' grow rapidly and saturate at
values comparable to the main wave. Although the constants of motion are nearly preserved, a serious
phase instability (chaos) develops in the numerical solutions. The instability is found to be associated
with homoclinic structures and the underlying mechanisms apply equally well to many Hamiltonian
wave systems.

PACS numbers: 03.40.Kf, 02.60.—x, 02.70.—c, 02.90.+p

In this Letter we discuss extensive moderate to long
time numerical experiments which we have carried out on
the focusing nonlinear Schrodinger (NLS) equation with
periodic boundary conditions. The NLS equation is a
well known Hamiltonian nonlinear wave system which
arises in many areas of physics, and is special among such
problems since a large class of solutions can be computed
via the inverse scattering transform (IST) (e.g. , [I]); the
NLS equation is said to be "integrable. " There are two
cases of physical interest —the focusing and defocusing
NLS. In the focusing case, when periodic boundary con-
ditions are imposed, the NLS equation has complicated
homoclinic structures which under perturbations can pro-
duce chaotic dynamics (e.g. , [2]). The periodic NLS
serves as a useful model describing unstable wave phe-
nomena (e.g. , instability in deep water waves) and has
been the subject of numerical simulations and laboratory
experiments (e.g. , [3]).

In our investigations, we employ two numerical
schemes which have been used extensively and effectively
by researchers studying the NLS equation: (a) the in-

tegrable discrete NLS (IDNLS) equation (e.g. , [2,4])
and (b) the Fourier split-step (FSS) algorithm (e.g. , [S]).
The IDNLS equation is an integrable differential-dif-
ference equation [4] and is implemented using a high or-
der time discretization. The FSS algorithm, although not
integrable, preserves the underlying symplectic structure
of the NLS equation and, as such, is in the class of sym-
plectic integrators which have been used as a means of
tracking the long time behavior of Hamiltonian systems

(e.g. , [6] and references therein). We use two numerical
schemes to demonstrate that the results obtained are due
to the extreme sensitivity of the periodic focusing NLS
equation (in the parameter regime described below) and
not the particular details of the numerical schemes em-
ployed. To be brief we mainly discuss the calculations of
IDNLS. The FSS algorithm yields analogous results.

In earlier work we have shown that initial data which
are nearby low dimensional "homoclinic manifolds"
trigger numerically induced joint spatial and temporal
chaos in nonintegrable numerical schemes at intermediate
values of the mesh size [2]. This chaos disappears as the
mesh is refined. In this Letter we concentrate on a more
troubling aspect of numerically induced chaos. We show
that temporal instabilities and chaos can be easily excited
by very small perturbations —on the order of roundoff.
Although our discussion centers on the NLS equation, we
have observed analogous behavior in other problems such
as the sine-Gordon and modified Korteweg-de Vries
(KdV) equations. We believe that similar results will be
found in many other Hamiltonian systems. The NLS
equation is an excellent paradigm system to study since
we have a great deal of analytical knowledge about this
equation, and it is reasonably straightforward to com-
pute.

We begin by summarizing our main observations.
(1) Tiny numerical errors (i.e. , 10 ' ) grow rapidly,

eventually saturate, but significantly alter the solution
after moderate times. For example, spatially even initial
values must evolve in an even manner. However, without
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imposing evenness as a separate constraint, we find that
an odd component is excited and develops into a size
comparable with the "main wave. " Alternatively, calcu-
lating in mathematically but not computationally equiv-
alent ways (e.g., simply by reordering terms in the equa-
tion) shows that small errors on the order of roundoA'

grow rapidly and eventually destroy the "true" solution.
(2) In the Hamiltonian framework, the periodic spec-

trum (see below) provides the "actions" in an action-
angle description and they are constants of the motion.
We verify that these constants are preserved by the nu-
merical scheme to very high precision.

(3) The sensitivity is due to the proximity to the under-
lying homoclinic orbits of the NLS equation. It turns out
that for the range of initial values we have chosen the
splitting distance between suitable complex eigenvalues of
the periodic spectrum is extremely small. Such initial
data occur naturally and can be associated with the evo-
lution of nearly elementary plane waves as well as waves
which evolve into complicated nonlinear states.

(4) After the growth of the small errors, the corre-
sponding state evolves, but not in a quasiperiodic tem-
poral manner as might have been expected based on the
integrability of NLS. The power spectrum of the associ-
ated evolution has a slowly decaying "tail" whose size
grows as the number of linearly unstable modes (i.e., the
suitable complex eigenvalues) increases.

(5) Analogous solutions of the defocusing NLS are
stable. They are not sensitive, and we have no difticulty
in computing the solution over long times, using either
IDNLS or FSS. The po~er spectrum remains compact
and, computationally, the solution is quasiperiodic in
time. The inverse scattering theory of the focusing NLS
equation with periodic boundary values is significantly
different from the defocusing NLS or the KdV equation
[7]. Defocusing NLS and KdV are analogous to finite di-
mensional Hamiltonian systems whose underlying geo-
metric structures are compact tori. In these cases,
without homoclinic structures, symplectic integrators are
effective.

We consider the NLS equation in the form

iu, +u„„+2 ~us~ u=0,

where s = ~ 1 (+ 1 focusing, —
1 defocusing), with

periodic boundary conditions u(x —L/2) =u(x+L/2)
and initial values u(x, 0) =g(x). In the focusing case,
the plane wave solution, up(x, t) =a exp(2i ~a ~ t), is
linearly unstable. When considering small perturbations
of the form u(x, t) =up(x, t)[1+a(x,t)], one can estab-
lish that the perturbation is separated into solutions of
the form e(x, t) ccexp(ip„x) exp(cr„t), where p„=2zn/L
and the growth rate cr„ is given by r„=cp„+4~a~ —p„.
Consequently, the solution is unstable provided 0 & p„
& 4~a~ . The number of unstable modes is the largest in-

teger M satisfying 0&M & ~a~L/n. The fastest growth
rate corresponds to a value n(p„) for which cr„ is maxi-

mal (i.e. , closest to 2~a
~

).
To solve the NLS via IST we use the associated linear

scattering problem

(2)

(3)

where u* is the complex conjugate of u and the parame-
ter X is an eigenvalue once boundary values are specified.
The spectrum of this linear operator is invariant under
the NLS flow and the periodic or antiperiodic eigenvalues

provide sufficient invariants to establish the in-

tegrability of the NLS. The conserved integrals J ~ci2T;
xdx=C; i=1,.2, . . . such as the L norm T~ =~u~, the
momentum T2 =uu *, and the Hamiltonian T3 =

~ u„~
+ ~u ~

are related to the above eigenvalues.
The IDNLS equation is given by [2,4]

iu„, +(u„+)+u„—) 2u„)/h2+s~u„~2(u„+)+u„—)) =0

(4)

with u„(t) =u(nh, t), u„~]2(t) =u, y~i2(t), n =0,
1, . . . , N (N even), h =L/N, s = ~ 1. Since IDNLS is

integrable, it possesses the special properties inherent in

such systems. As h 0 (4) converges to (1) with accu-
racy O(h ). In our numerical simulations the time in-
tegration of this system of ordinary differential equations
is performed by the adaptive Runge-Kutta-Merson rou-
tine (D02BBF) in the NAG (numerical algorithms group)
software library. We specify an extremely high tolerance
to ensure that the results are not dependent upon the time
integration. For a description of the FSS algorithm see,
for example, [5]. We only remark that in each partial
step of the FSS algorithm, the canonical symplectic
structure of the NLS equation is preserved, hence the
FSS algorithm is a symplectic integrator.

We first discuss our calculations associated with the
initial data g(x, e) =a (1+c cos6px ), where a = 1.5, p
=2m/L, L =4@&2, and e= IO ' . From the linear theory
discussed above, we see that g(x, c-) contains eight unsta-
ble modes. In Fig. 1 we plot the results of IDNLS where
we use 512 grid points. In Fig. 1(a) we plot the growth
of asymmetry [from (1) note that g(x, e) is an even func-
tion and should have evolved in an even manner]. The
asymmetry is measured by log~p~f6 f 6~ where f6 is the
sixth Fourier harmonic [u =Pf~exp(ip x)]. The asym-
metry grows exponentially fast; for a while the rate of
growth is consistent with that predicted by the maximum
growth rate of the linearly unstable plane wave (i.e. ,
am, „=4.5). Note that the asymmetry reaches O(1) be-
fore it saturates. In Fig. 1(b) an averaged amplitude of
the Fourier transform is depicted. Let u~(k) be the
Fourier transform of u~(t) [u~. (t) is evaluated at every
ht =0.2]; we plot the average: f„,(k) =gj~=~~uj(k)~//N
vs k. We note that the Fourier spectrum has a slowly de-
caying asymptotic "tail" which is inconsistent with the
expectation of a quasiperiodic temporal flow. Note espe-
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FIG. 2. The growth in the difference of solutions for IDNLS
with g(x, e=IO ').
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FIG. 1. (a) The asymmetry for IDNLS with g(x, @=10 '2).
(b) The power spectrum for IDNLS with g(x, @=10 ' ). (c)
The growth in the difference of solutions for IDNLS with

g(x, f = 10 ").

cially the comparison with the Fourier spectrum of the
defocusing NLS equation (Fig. 4). In Fig. 1(c) we plot
the logarithm of the averaged difference of two solutions:
log|op~-o(uj(t) —uj(t)(/(N+ I) where uj(t) is the solu-
tion calculated on ( —L/2, L/2) and u~(t) is the solution
calculated on (O, L/2) with symmetry imposed, i.e.,

u -„(t)=u„(t) (i.e., we calculated on half the lattice). In
these calculations the "dominant" complex eigenvalues in
the upper half plane were nearly isospectral. The relative
change of the first five conserved quantities fC;);=1 was

less than 0.01%. As we vary e in g(x, e) we find similar
results; although for significantly larger e (e.g. , e =10 ')
it takes longer before the asymmetric perturbations "or-
ganize" into rapid growth.

As a crude model of roundoff effects we add to the
solution [e.g. , g(x, e) with @=IO ') a small random per-
turbation at each time step: sir(x, t), where 0 & r & I (r
is obtained via a random number generator) for a range
of e~. 10, 10, . . . , 10 ' . The main features ob-
served before hold: rapid growth of asymmetry, a slowly

decaying tail in the power spectrum, etc.
Even if we impose evenness as a constraint, errors on

the order of roundoff grow rapidly. For example, consid-
er IDNLS with the initial values g(x, e) with a=10
and u -„(t)=u„(t) imposed. We first calculate IDNLS
in precisely the way Eq. (4) is specified for t =0-100
—call this solution u„' . Next we calculate (4) only by
distributing the nonlinear terms, i.e. , using s(u„( u„+1
+s(u„( u„—i. Call this solution u„. The logarithm of
the averaged difference between the solutions,
Pj~-ologlo(uz. ' (t) —uj (t)(/(N/2+ I ), grows rapidly
(Fig. 2) and, as was the case with asymmetry, the solu-
tions become drastically different. We note that the
power spectra of each is broad banded and different from
one another as well (not plotted here).

Strongly nonlinear states are unstable and experience
the same loss of predictability associated with the above
phenomena. For initial data g(x, e) with a=10 ' we

calculate the solution via IDNLS for t =0-25. At t =25
we are into the fully nonlinear regime and using these
values as initial data, we then calculate the two solutions
(above): u„"'(t),u„"'(t) from t =25 to t =225. Again
(Fig. 3) the solutions deviate significantly, although the
growth rate of the difference is smaller than in the previ-
ous case. Furthermore, imposing a small random pertur-
bation at each time step (for t ) 25), we find a more rap-
id growth of the deviation to an 0(1) value.

For defocusing NLS all the difficulties encountered in

the focusing case disappear. The power spectrum of a
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FIG. 3. The growth in the diA'erence of solutions for IDNLS
for the nonlinear regime.

FIG. 4. The power spectrum for defocusing IDNLS with
g(x, e =10 ').

typical solution [compare with Fig. 1(b)] is plotted in

Fig. 4 where we take g (x, e), e = 10 '. We observe no
growth of asymmetry and both algorithms IDNLS and
FSS show no growth in the difference between solutions
u„' and u„. Recall that the periodic defocusing NLS
does not have homoclinic structures. Small errors do not
grow rapidly and IDNLS and FSS are accurate predic-
tors of the long time behavior of the solution.

Since we are studying initial data which are small devi-
ations from a constant, we are able to calculate the
periodic or antiperiodic eigenvalues of 2-3 via perturba-
tion analysis (see e.g. , [8]). For the initial data g(x, e)
=a(1+ecos6px) with e small, at leading order there are
eight complex eigenvalues which are double points (i.e.,
eigenvalues of multiplicity 2). Each of these double
points corresponds to an unstable mode. We find that un-
der perturbation the double point corresponding to the
perturbation 6p is split by O(e). The other complex dou-
ble points, while translating by O(e ) nevertheless have a
splitting distance which is smaller than any power of e.
The splitting distance of the remaining complex eigenval-
ues is beyond all orders in e. Consequently, we are "ex-
ponentially close" to the homoclinic manifolds, and small
deviations on the order of roundoff can lead to homoclinic
crossings and the observed chaos. We have extended our
perturbation analysis to predict how modifications in the
initial values of earlier numerical simulations [3] could
lead to homoclinic crossings under tiny perturbations
such as roundoA. We believe that this mechanism can
also explain similar di%culties observed, but not under-
stood, in other Hamiltonian equations [9].

The extreme proximity of these data values to the un-
perturbed homoclinic manifolds prevents us from numeri-
cally calculating the "true" solution after moderate time.
The calculations are inAuenced by minuscule errors; corn-
putationally the NLS equation is "eAectively chaotic" in
this range of parameter space despite it being "inte-
grable. " Since NLS is so special, we expect an underly-
ing structure to the temporal disorder which may be
determined by appropriate statistical studies. Numerical
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simulations which test the stability of small odd perturba-
tions, rearrangements of terms, complex nonlinear states,
such as those mentioned in this Letter, can demonstrate
the existence of serious underlying numerical instabilities
even when known constants of the motion are seemingly
well preserved. A more complete account of the work de-
scribed here will be published in a future paper.
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