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Steady-State Drainage of an Aqueous Foam
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The process of wetting of a monodisperse foam by the continuous addition of liquid from the top has
been investigated for a cylindrical column. The velocity of the interface between dry and wet foam was
found to vary as the square root of the rate of addition of liquid. Evidence of a structural transformation
was found around gas fraction @=0.87. It was interpreted as arising from the collapse of the four-sided
faces of the (Kelvin) polyhedra which constitute the foam cells, and this was directly observed when

large bubbles were used. There is a second transition at around @=0.6, with the onset of bubble motion.

PACS numbers: 82.70.Rr, 68.90.+g

The structure of a liquid foam, and its relation to the
characteristic properties of this complex two-phase sys-
tem, present a classic problem which has received fresh
attention in a number of computational and experimental
studies, mainly for two-dimensional systems [1]. In par-
ticular, progress has been made in understanding the
coarsening process, due to diA'usion of gas between cells.
The explanation of remaining anomalies in coarsening
data has focused on the role of Plateau borders [2], the
liquid-filled regions at the intersection of cell walls (Fig.
1), often ignored in studies of "dry" foam with a small
liquid fraction. In turning to the case of a three-
dimensional foam, an additional complication presents it-
self, in the vertical drainage of the liquid under gravity.
The underlying mechanisms of this key aspect of foam
behavior were addressed in the definitive work of Mysels,
Shinoda, and Frankel [3], mainly concerned with the
thinning of a single soap film, but they remain debatable.
More recently Princen [4] has discussed the vertical equi-
librium profile towards which the draining system must
tend; this is in itself an awkward problem.

There seem to be relatively few he1pful experiments.
The obvious one, monitoring drained liquid as a function
of time, does not oAer much immediate insight [5]. Al-
ternatively, if liquid is fed in at the top of the system so

that a state of steady drainage rather than that of equilib-
rium is approached, it turns out to result in more easily
interpreted phenomena. The only previous related experi-
ments of which we are aware are those of Noever and
Cronise [6] on two-dimensional systems. Surprisingly,
the initial phase in which a dry foam is being progressive-
ly wetted exhibits very simple behavior, conforming to a
power law which can be rationalized. As the flow rate is
increased, two distinct anomalies are encountered, attri-
butable, respectively, to structural changes and the onset
of motion of bubbles.

The experimental procedure is elementary. A tube is
placed vertically in a bath of detergent solution, as indi-
cated in Fig. 2. A foam is created within the tube, usual-

ly by blowing bubbles of Nq through a fine nozzle placed
beneath it. When performed at a constant slow rate, this
creates a foam of uniform cell size, and hence an ordered
structure. A more typical, disordered foam may be made
by blowing the gas through a filter. Once the foam has
drained to a state close to its equilibrium (in a few
minutes), further solution is introduced from the top at a
steady rate.

The first, and striking, observation is that the boundary
between the dry and wetted foam remains very sharp, as
in the 2D observations of Noever and Cronise [6], so that
its velocity is easily measured. Moreover, this velocity
remains constant as wetting proceeds. It was recorded
for a series of diA'erent flow rates, yielding results as in

Fig. 3(a). Also shown, in Fig. 3(b), is the variation of
gas fraction @, estimated simply by noting the height of
wet foam created, plotted against the volume flow rate Q
of the solution. These quantities are approximately relat-
ed by

FIG. 1. Plateau borders, meeting at a fourfold junction.

where 8 is the cross-sectional area of the tube. (This
neglects the liquid content of the dry phase: Note also
that the top surface of the wetted foam does not move
significantly. ) The data of Figs. 3(a) and 3(b) are con-
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FIG. 2. Schematic experimental arrangement.
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sistent with such a relation.
Both dependences on flow rate are well described by a

square-root dependence, v —Q', (I —N) —Q' . Values
of the power-law index obtained by curve fitting give a
mean of 0.53+ 0.07 for nine runs under diA'erent condi-
tions (e.g. , diA'erent bubble sizes, always much less than
that of the tube. )

This square-root dependence may be explained as fol-
1ows. We expect the essential mechanism of flow over
most of the accessible range to be the longitudinal motion
of Plateau borders. These form a network of "pipes, " as
in Fig. 1, not with the fixed boundary conditions that
would dictate Poiseuille flow, but rather with free bound-
ary conditions. Nevertheless the flow requires shearing
motion, and the flow rate in each pipe should show the
same dependence on the square of cross-sectional area as
in Poiseuille flow, on dimensional grounds. To lowest or-
der in 1

—@ this gives Q —(1 —N), in keeping with our
results. However, it is clear that this kind of scaling ar-
gument can only be valid for small 1

—@, since the
geometry and topology of the network itself must alter
significantly as the liquid fraction increases. Indeed, we
shall see that the data reflect such changes, when exam-
ined closely. Furthermore, this drainage mechanism is
not unique. Alternatively, motion of the cell walls into
and out of the borders can contribute [3].

In some cases, the simple picture of flow with free
boundary conditions may be inadequate. For some sur-
factants a large surface viscosity must be considered.

Q [ml/s]

FIG. 3. Data for a foam made up of bubbles of diameter
0.77 mm, in a tube of diameter 15 mm. Height of foam column
is approximately 350 mm. (a) Interface velocity as a function
of IIow rate Q. The fitted curve is v —g', where a=0.53. (b)
Liquid fraction (I —N) as a function of Q. The fitted curve is

(I —&)—Q~, where P=0.47 [a+P= I.O, in accord with Eq.
(I)]. Structural rearrangements were observed mainly at
@,=0.88 in this case.

However, we believe that this is not the case for the
detergent used here, and the success of the dimensional
argument (based on bulk viscosity) supports this.

This simple experimental arrangement provides us with
an easily controlled variable gas fraction between 1 and
about 0.5, which should be very convenient for a variety
of further measurements, some of which may be stimulat-
ed by the following observations. For low How rates (and
hence high @), the liquid drains between the cells, and
the cells retain their positions, more or less. This scenario
cannot be sustained at large flow rates. The cells must
eventually separate as isolated bubbles, so that the foam
loses stability. This is essentially the "rigidity loss transi-
tion" described by Bolton and Weaire [2], but this has
been theoretically analyzed only for 2D (static) models
[2].

At high flow rates bubbles are thus free to move in con-
vective motion. We have found it dificult to assign a pre-
cise value of @ to this instability: It was generally ob-
served in the range 0.50-0.65. This is to be compared
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with the critical density @=0.74, at which the rigidity
loss transition of a close-packed equilibrium structure is

expected in three dimensions. Thus the loss of mechani-
cal stability of the corresponding static system does not
immediately lead to large-scale bubble motion.

Another anomaly, which was not anticipated, showed

up in the finer detail of the v/Q relationship. A small
departure from the smooth square-root variation of v was
repeatedly observed when the gas fraction passed through
the range @=0.8-0.9. We believe that the explanation
of this is to be found in the foam structure, as follows.

In contrast to the situation in two dimensions, the equi-
librium structure of an ordered 3D foam is not self-
evident. For the case of a dry foam, the assertion of Lord
Kelvin [7], that the body-centered cubic arrangement of
cell centers is optimal, remains the conventional wisdom
[8]. The corresponding cell shape is sketched in Fig. 4.
However, in the opposite limit of low gas fraction (dry
foam), it is clear that close-packed structures such as fcc
must have lower energy: Hence there ought to be at least
one structural transformation, as gas fraction is de-
creased. Even if we retain the bcc structure, there is a
critical value of @, at which second-neighbor cells lose
contact (see Fig. 4). This in itself could lead to an anom-
aly in drainage, but it may well provoke a larger structur-
al change. It is a familiar property of pairwise-potential
models of crystal structure that the bcc case is unstable
for nearest neighbor interactions, and contacting bubbles
may be closely analogous. The collapse of four-sided
faces corresponds to the loss of contact between second-
nearest neighbors. It is also true that a junction of more
than four borders is unstable for the dry foam, but this is
not necessarily the case for finite liquid fraction.

We saw evidence of structural change in visible distur-
bances of cell positions, within the above range of @.
From a large number of such observations we estimate
the critical value to be @,=0.87+ 0.04. However, one is
frustrated by the difticulty of simple visual observation.
This is because the surface structure in the tube is pinned
in a close-packed structure, and only the central core con-
stitutes the bulk to which such arguments apply.

FIG. 4. In the structure proposed by Kelvin, Plateau borders
are arranged as shown around the (slightly curved) faces of a
polyhedral cell (minimal tetrakaidecahedron). The shaded
areas indicate the contacts between adjoining bubbles, while the
white areas are sections through the Plateau borders.

In order to provide further evidence for this structural
change, we prepared samples with relatively large bub-
bles, comparable in size to the diameter of the tube. We
have previously pointed out [9] that a sequence of beauti-
ful ordered structures is readily formed in such a case.
For a suitable bubble size, the central core is a single
string of Kelvin polyhedra, as in Fig. 4. In this system we

may closely observe the eA'ects of increasing the How rate
Q, since the entire structure is clearly visible. As the con-
tacts on the four-sided faces are eliminated, there is a
rapid sequence of topological changes, resulting in a
transformation of the entire structure. The new structure
is again periodic, but always lacks the four-sided faces
which provoke the original instability. In at least some
cases, its core is made up of pentagonal dodecahedra.

The critical value of @ which we have identified for the
structural change also compares well with a crude esti-
mate of the expected value for the closing of the four-
sided cell faces, as follows. For low liquid fraction, 1

—@
should scale as the square of the transverse dimension of
the Plateau borders. That is, each Plateau border makes
a contribution proportional to its length and cross-
sectional area, the latter being treated as constant along
its length. The obvious corrections to this (overlap at and
shape of the junctions) appear to largely cancel, as indi-
cated by the fact that an alternative estimate based on in-

scribing a sphere to touch the fourfold faces gives much
the same result.

The ratio of the liquid fractions necessary to create
Plateau borders whose width is such as to span the four-
and six-sided faces is 1:3, which is simply the ratio of the
widths of these faces. Since the loss of contact on the
six-sided faces corresponds to the separation of bubbles,
for which N is 0.68 (packing fraction of bcc, the resulting
estimate for the liquid fraction for the collapse of the
four-sided cell faces is @=1 —(1 —0.68)/3 =0.89.

Any more complete analysis of structural stability,
whether for ordered or disordered structures, should also
take account of the shear stress resulting from the
compression-expansion of the foam within a fixed cross
section.

In previous descriptions of foam structure, such as that
of Dormer [10], it has often been claimed that the Kelvin
polyhedron, while acceptable in principle, does not pre-
dominate in practice, even for cells of equal size (mono-
disperse foam). This should now be reconsidered: Direct
experimental measurements of three-dimensional foam
structures are needed.

In conclusion, we have demonstrated that steady-state
drainage, in the sense defined above, oA'ers new opportun-
ities for foam experiments, and exhibits evidence of a
hitherto unobserved structural transformation, as well as
a transition to a diferent type of How. On closer exam-
ination, it should provide new insights into the drainage
process itself.

Extensions of this work which are still in progress
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include the formulation of a mathematical theory of
drainage [I I], which exhibits the qualitative features re-
ported here, and a more complete analysis of the stability
of three-dimensional foam structures [12].
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