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Frequency Dependence of the Vortex-State Resistivity in YBazCu307 —b
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Swept-frequency measurements (1-600 MHz) of the vortex resistivity in YBa2Cu307 were performed
I[n fields from 0.5 to 8 T. At all fields studied, both the real and imaginary parts of the resistivity display
a power-law frequency dependence with exponents a] and a2 that depend only on the reduced field
h =H/H*(T). The scaling field H*(T) is identified with the critical field for the solid-to-liquid transi-
tion. The power-law dependence and the frequency variation of the phase angle are consistent with the
model of Fisher, Fisher, and Huse, The field dependence of a] and a2 provides an improved determina-
tion of the critical phase angle (65.7') and the dynamic exponent z (3.7).

PACS numbers: 74.60.6e, 74.25.Nf, 74.72.Bk

In the presence of a weak oscillating current, vortices
in a type II superconductor experience an oscillatory
Lorentz force. In the low-T, superconductors, measure-
ments of the complex response versus frequency (co) have
provided valuable information on the pinning forces. Git-
tleman and Rosenblum [1] measured the power absorp-
tion of the vortex system in PbIn and NbTa films over a
wide range of frequencies, and analyzed their data with
the equation

dx/dt + cop, „x= (Jyo/ti) e'"'

(where x is the line displacement, rl is the damping
viscosity, cop,„ the pinning frequency, J the driving current
density, and po the Ilux quantum). Similar experiments
on the vortex state in the high-T, superconductors would
be of great interest, but few swept-frequency results
exist. Olsson, Koch, Eidelloth, and Robertazzi (OKER)
[2] measured the impedance of thin-film YBa2Cu307
(YBCO) at frequencies up to 500 MHz, but at the single
field value 0.55 T. They interpreted their results in terms
of the scaling model of Fisher, Fisher, and Huse (FFH)
[3]. Whether there exists a critical field (as scaling be-
havior would suggest) is a central issue in the vortex sys-
tem in the cuprates [4,5]. The scaling model is based on

a diverging correlation length and a slowing down of the
characteristic time scale near the transition. Swept-
frequency experiments provide a particularly incisive
probe of the changing time scale. Thus, it is important to
extend OKER's measurements to a much broader range
of fields and temperatures. Moreover, it is necessary to
clarify the diAerences between the scaling model and the
general class of "mean-field" models exemplified by Eq.
(1). Recently, Owliaei, Sridhar, and Talvacchio [6] mea-
sured the variation with field of the surface resistance R,
in thin-film YBCO at the fixed frequency 10 6Hz, and
found agreement with a model that is a slight generaliza-
tion of Eq. (1). A sharper distinction between scaling
models involving a phase transition and the mean-field
models seems necessary.

We have measured the complex resistivity of the vortex
state in thin-film YBCO in the frequency range 1-600
MHz in a field that may be varied from 0 to 8 T. The c-

axis-aligned films (grown epitaxially [7] by metallorganic
chemical vapor deposition on LaA103 substrates) are
etched into rectangular strips of area 9X1 mm and
thickness 0. 1 to 0.2 pm. The samples, with critical tem-
peratures T, of 88-89 K, are placed in the bore of a su-

perconducting magnet, with the field H normal to the
CuOp planes. Contact pads of resistances under 20 mA
are made by evaporating silver film. In our technique [g],
the rf signal transmitted through the sample is phase
detected by a vector analyzer (Polarad ZPV). The sam-
ple impedance Z is deduced from the phase and ampli-
tude of the transmitted signal. By paying careful atten-
tion to impedance matching, we can resolve changes in Z
of 20 mA at 300 MHz. Calibration checks against stan-
dard inductors were performed between 1 and 800 MHz.
Because Z spans over 2 decades in the field range of in-

terest, we studied five samples that varied in dc resistance
from 10 to 100 0 at 100 K. The typical value of J =50
A/cm . A reduction of J by a factor of 10 does not alter
the spectra. Apart from the ability to sweep frequency,
an advantage of this technique is that the measured Z
is directly proportional to the complex resistivity, viz. ,

ZA/I =p(co) =pt(ro)+ip2(to) (A and I are the film cross
section area and length, respectively). Techniques involv-

ing microwave resonators [6,9] or induction coils [10]
probe only the surface impedance R, which must then be
converted to the complex resistivity using a model calcu-
lation [11].

Before describing the frequency dependence of p~(to)
and p2(to), we discuss how the complex impedance varies
with field at fixed frequency (Fig. 1). The dissipative
part ReZ (proportional to pt) increases monotonically
with field, but the reactive part ImZ (proportional to pq)
is nonmonotonic. Initially, ImZ increases linearly with 8,
rejecting the increase in vortex density. However, at 3.0
T (arrow) it deviates upwards, and attains a maximum
near 5 T. Further increase in field causes ImZ to drop
rapidly. With measurements limited to a single frequen-
cy, Eq. (1) may be made to agree with Fig. 1, if we as-
sume that the field reduces co&,„, so that the system
crosses over from the inductive (co« co&,

.„) to the dissipa-
tive regime (to)) to~;„) [6]. However, such a simple sce-
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FIG. I. Variation of ReZ(co) =p~l/2 and ImZ(co) =p2l/A in
thin-film YBCO with magnetic field, at the fixed frequency 375
MHz. The break in slope in ImZ near 3.0 T (arrow) coincides
with the critical field H* (see text). ImZ continues to increase
until 5 T, beyond which it decreases rapidly to zero.
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nario is actually incompatible with the swept-frequency
results to be discussed next. The swept-frequency experi-
ments reveal a universal pattern in the way the field alters
the spectra of p~ and pz and (especially) the phase angle.
These results highlight an important diN'erence between
the scaling model and mean-field models such as Eq. (1).

In general, both ReZ and ImZ display power-law be-
havior within our frequency window. In the main panel
of Fig. 2 we have plotted in log-log scale ReZ (four up-
permost curves) and ImZ (four lowest curves) versus co

for selected values of H, with the temperature T fixed at
80.9 K. At the three lowest fields, p~ fits well to a strict
power law, co". (Hereafter, we use p~ and p2 in place of
ReZ and ImZ, respectively. ) The fits (solid lines) give an
exponent a~ that decreases with field (ai =0.95, 0.835,
and 0.76 at 1.0, 2.4, and 2.82 T, respectively). Similarly,
the reactive component pz (—ImZ) follows a strict
power law co". In the same field range, a2 decreases
from 0.80 to 0.73. When the field exceeds a critical value
(very close to 2.82 T at this temperature) the dc resistivi-
ty p„„—=pi(0) increases rapidly with field. In the liquid
state (for example the curve at 4.03 T) p~ may be fitted
to pi(co) =p»+Aco", provided p„„ is not too large [12].
The strict power-law fit, however, remains valid for p2
deep into the liquid state. To summarize, we replot pl in
linear-linear scale in the inset. At 1 T, the curve of p] vs
co is almost linear (ai =0.95), but at 2.82 T (close to the
solid-liquid transition line), the curve acquires significant
negative curvature (a~ =0.76). In the liquid state at 4.03
T, p„„ is finite (ReZ —0. 1 0 at co=0), but remains a
small fraction of the total dispersion.

The striking power-law dependence with fractional ex-
ponents is observed in all samples over the range of fields
(0.5-8 T) and temperatures (80-86 K) investigated. We
now analyze their field dependence. At each tempera-
ture, a~ is close to 1.0 at low fields, but falls steeply to
values less than 0.4 with increasing field. In contrast, a2
varies slowly from 0.8 to 0.65. Thus, their trajectories
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FIG. 2. Main panel: Log-log plot of ReZ=p~l/A (four up-
permost curves) and ImZ=p2l/A (four lower curves) versus
frequency co at the fields indicated. Solid lines are fits to
power-law behavior. At I T, the exponent a~ (of ReZ vs co)
equals 0.95, whereas a2(lmZ) =0.80. However, they become
almost equal (a~ =0.76 and a2 =0.73) when the field (2.82 T) is
close to the transition field for this temperature (80.9 K). All
curves are from sample A, except the uppermost curve at 4.03 T
(from sample B). An co-independent contact resistance of 20
mA has been subtracted from each curve. In the inset, the
same data set for ReZ is replotted in linear scale to highlight
the negative curvature at 2.4, 2.82, and 4.03 T.

must intersect at some field H*(T) that depends only on
T. Remarkably, we find that ai and a2 collapse onto two
universal curves if we plot them against the reduced field
h =H/H*(T) (see Fig. 3) [see Ref. 13]. Thus, within
our resolution, the scaling field is also the field H* at
which a~ =a2. The universal behavior shown in Fig. 3
provides a surprisingly simple description of the vortex
response in the field and temperature range studied, and
justifies the field-scaling procedure. We identify H* as
the critical field separating the solid from the liquid state.
Moreover, the near coincidence of H*(T) to the critical
field Hg for the "vortex glass-to-liquid" transition [4,5] in

the phase diagram of YBCO (inset in Fig. 3) suggests
that H* is identical with H~.

The universal curves show that a2 —ai is negative when
h & 1 and positive when h & 1. This change in sign has
interesting implications for the phase angle

tantt(co) =pz/p~ —co
' ', 0 ( h ( —1.5.

Equation (2) implies that tantIi increases (decreases) with
co when a2 —ai is positive (negative), and is frequency in-
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FIG. 3. The variation of the exponents a~ (solid symbols)
and a2 (open symbols) versus the reduced field h in three sam-
ples (A, B, and C). See Ref. [13] for details. Within our
scatter, a] and a2 fall on two universal curves. Lines are guides
to the eye. At the intersection (h =1) the critical value
a, =0.73 ~0.03. The temperatures (in K) are 80.9 (A), 80.0
(A ), 85.3 (A**), 81.1 (B), 83.6 (B*), and 85. 1 (C). In the
inset, H*(T) is compared with the transition line (broken line)
reported by Koch et al. [4] and by Gammel, Schneemeyer, and
Bishop [5].

dependent at h =l. This overall trend is illustrated in

Fig. 4 which plots tang vs co for fields on either side of the
transition. In the "solid" phase (curves at h =0.4, 0.71,
and 0.85), tang(co) is observed to decrease weakly with

increasing m. We recall that a phase angle that decreases
with increasing co is characteristic of a pinned vortex (in-
ductive at small co, but dissipative at large co). For in-
stance, Eq. (I) predicts that tang(co) =co~;„/co, i.e., p ap-
proaches zero as I/co. However, in YBCO, the smallness
of the parameter ~az —

a~~ implies that the decrease in

tang(co) is much slower (co ' at h =0.4 to —logco as
h ]). Moreover, in the limit of high frequencies, tang
approaches the finite value tang, —2. 1+ 0.1, rather than
zero. It is interesting that even in the "solid" phase, there
exist qualitative disagreements with the mean-field mod-
els.

%e now compare our findings with the scaling model
of FFH. Dorsey [14] has shown that at the critical point
the conductivity a(co) equals ( —ico) ', i.e., a~ =a&=a, .

From this, Dorsey predicts that the critical phase angle
has the co-independent value It, =a, tr/2 =tr/2[1 —(d
—2)/z] (the dynamic exponent z relates the time scale r
to the coherence length g by r —g'). Identifying the in-
tersection point in Fig. 3 with the critical point, we obtain
a, =0.73+ 0.03, from which

Frequency(MHz)

FIG. 4. The frequency dependence of the tang in log-log plot
for reduced fields (as indicated) above and below the critical
value. At the critical value h =1; tang has the co-independent
value 2.1+0.1. Curves at h =0.71, 0.85, and 1.0 are from sam-
ple A, whereas curves at h =1.47, 1.73, and 2.0 are from sample
B. At large fields (h =1.73,2.0), where p„ is significant, the
contribution of p„ is included in computing tantt).

=65.7' + 2' and z =3.70 ~ 0.46 . (3)
As discussed above, the phase angle changes with co

both above and below the critical field, but at h =1 it
remains independent of frequency (from 2 to 600 MHz)
at the value tang, =2.1+'0.1 (Fig. 4). Our values for P,
and z are significantly smaller than OKER's [2]. In their
experiment, OKER determined the transition tempera-
ture Tg (at the field 0.55 T) by measuring the dc l-V
curves At Tg. , they observe that the amplitude ~Z~ varies
as co . Also, the phase angle at Tg is shown to be m in-
dependent over about 1 decade in frequency. From their
value of p, (74') OKER obtain z =5.6, which is compa-
rable with z =5.2 deduced from the dc I Vcurves. (The-
disagreement seems to lie outside our measurement un-

certainty. To get OKER's value z =5.6, the two lines in

Fig. 3 would have to intersect at a, =0.82, which is out-
side our error bars. Also, a critical value of tang as large
as tan74' =3.49 seems incompatible with the data in Fig.
4.) Aside from the numerical difference, the two experi-
ments are qualitatively consistent.

Figure 3 shows that in the liquid state (h ) 1), a~ de-
creases rapidly whereas a2 remains near the value 0.64.
Therefore, the phase angle must increase with frequency
as a power law [Eq. (2)]. This is illustrated by the curve
in Fig. 4 at the reduced field 1.47, which shows tang ap-
proaching the critical value from below as m increases.
At higher fields (h =1.73 and 2.0) the phase angle in-
creases even faster with frequency. However, there is
now noticeable deviation from strict power-law behavior
[Eq. (2)]. This reI]ects the increasing dominance of p
over the dispersive part of p~ which spoils the power-law
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description [12].
The striking pattern that emerges from Fig. 4 is that

the frequency dependence of tang changes from a de-
creasing function to an increasing function of co as the re-
duced field exceeds 1. As noted above, models such as
Eq. (1) and those used in Refs. [6] and [11] would pre-
dict a phase angle that monotonically approaches zero at
large m. The observed phase-angle behavior seems
diScult to reconcile with such mean-field models. In con-
trast, it is consistent with a central prediction of the scal-
ing model of FFH. Near the critical temperature, the
phase angle is an odd function of its argument that may
be written [3,14] as (using the reduced temperature
t =T/T, instead of h)

y(r, ru) =P (x ), x = (r —1)co (4)
Above the transition (x & 0), P decreases from the criti-
cal value a, rr/2 to zero as x +~. By rewriting the ar-
gument as x =(I/rro) '/'", we see that P depends (up to
a sign) only on the ratio of the ac period to the charac-
teristic time z of the system. Increasing m at fixed z has
the same eA'ect as increasing z at fixed m. Thus, above
the critical temperature, increasing the frequency mimics
the eAect of moving the system closer to the transition,
whence tang increases monotonically with frequency to
its critical value tang, . Conversely, below T„ tang de-
creases to its critical value with increasing frequency.
These predictions are consistent with the results in Fig. 4
if we replace t with the reduced field (h —1). The phase
angle decreases with frequency when the vortex is in the
"solid" state (h ( 1), whereas it has the opposite trend in

the "liquid" state (h & 1).
In conclusion, we find that between 1 and 600 MHz

the complex resistivity in the vortex state of YBCO
displays power-law frequency dependence with fractional
exponents al and a2. From the field dependence of the
exponents, we obtain a scaling behavior that is consistent
with predictions derived from the vortex-glass model. In
particular, at the critical field, the value a, =0.73 deter-
mines the critical phase angle (65.7') and the dynamic
exponent z (3.7). Away from the critical line, the phase
angle p is observed to decrease with increasing frequency
in the solid state, but to increase with co in the liquid
state, in agreement with the scaling model of FFH. Such
unusual behavior is incompatible with models such as Eq.
(I ) that do not incorporate a diverging scaling length.
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