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Commuting time translations and electric translations are used for the specification of time dependent
solutions of the Schrodinger equation for a Bloch electron in a periodic in time electric field. Explicit
one-band expressions are found for the quasienergies and the corresponding time dependent solutions.
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A well-known and widely used concept in solid state
physics is the quasimomentum or the Bloch momentum
[1]. The latter is a consequence of finite translational
symmetry in space for crystalline solids. It is also possi-
ble to define finite translations in momentum space which
lead to the concept of a quasicoordinate. The quasi-
momentum and the quasicoordinate form together a
quantum mechanical representation which is called the
kq representation [2]. A much less known concept is the
quasienergy which is a consequence of finite translational
symmetry in time for Hamiltonians containing a periodic
function of time [3]. Recently the quasienergy has ac-
quired interest in the framework of laser irradiated super-
lattices [4]. In analogy with quasimomentum (k) and
quasicoordinate (q) it is natural to expect that one can
also define, along with quasienergy (e), the concept of
quasitime (r). For this one needs finite translations in

energy. Such related translations were defined in connec-
tion with the dynamics of a Bloch electron in a constant
electric field [5]. A translation in time by T and a
translation in energy by h(2tr/T) commute. They are
the fundamental translations in time and energy in the
same way the translations by a and h(2tr/a) are in coor-
dinate and momentum, respectively [2]. It should, how-

ever, be pointed out that while a translation in time is a
perfectly well-defined quantum mechanical operator [6],
this is not the case with a translation in energy [5]. The
latter is a multiplication by a time dependent phase, and
as such it is a well-defined operation, but it is not a prop-
er operator in quantum mechanics. The concepts of
quasienergy and quasitime have recently acquired wide-
spread use in signal processing [7].

In this Letter we define commuting translations in time
and energy and show how they are used for the
specification of solutions for the time dependent Schro-
dinger equation for a Bloch electron in a periodic in time
electric field. The relevant operator for the symmetry of
the problem is 5=i h cl/r)t —H with H being the Hamil-
tonian. Finding solutions of the time dependent Schro-
dinger equation is equivalent to finding eigenstates of 5
corresponding to zero eigenvalue. Finite translations in

time a(T) by the period T of the applied electric field
commute with S. These translations define the quasiener-

gy [3] with the Brillouin zone 2trh/T. Another operation
(we distinguish between an operator and an operation)

commuting with 5 is a combined translation P(a) in

space and energy [5]: a translation by the lattice con-
stant a in space and by eE(t)a in energy, where —e is
the electron charge and E(t) the applied electric field.
The translations a(T) and P(a) also commute with one
another if the zero Fourier component Eo of the elec-
tric field E (t) assumes the values eEoa = (2n h/T) g,
g=0, 1,2, . . . . The meaning of this relation is that the
spacing in the Stark ladder [g] of Eo has to be a multiple
of the Brillouin zone for the quasienergy. When this rela-
tion on Eo is satisfied, one uses the commuting operators
a(T) and P(a) for specifying the solutions of the time
dependent Schrodinger equation. In particular, it is
shown that the well-known Houston time dependent solu-
tions [9] are eigenfunctions of the commuting translations
a(T) and P(a). From the eigenvalues of a(T) an explicit
analytical expression is found for the quasienergies of a
Bloch electron in a time dependent periodic electric field.

We start with the time dependent Schrodinger equa-
tion written in the following way:

Sy(x, t) —= i h —H(t) i'(x, t) =0,

where x is the one-dimensional space coordinate. One
can consider Eq. (1) as an eigenvalue equation for the
operator 5 with eigenvalue 0. For a Bloch electron in a
time dependent periodic electric field E(t), H(t) has the
form

2

H(l) = +V(x)+eE(t)x.
2fpz

(2)

Here V(x) is the periodic potential of the crystal,
V(x+a) =V(x), and E(t+T) =E(t). A finite transla-
tion in time by T is [6]

a(T) =—exp
1T:exp —eT
6 (3)

a(T) y(x, t) = tlt(x, t+ T) . (4)

The wave function y(x, t) can be multiplied by a time

It commutes with 5 [the operator in Eq. (1)]. exp[(i/
h)eT] in Eq. (3) are the eigenvalues with e being the
quasienergy [3]. e is defined modulo 2tth/T, which is the
Brillouin zone for the quasienergy. We have
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dependent phase exp[if(t)]. The new function

exp[if(t)] y(x, t) satisfies Eq. (1) but with 0 [Bf(t)/
Bt]y(x, t) on the right-hand side. Such a phase multipli-
cation can therefore be interpreted as a shift in energy by
the quantity 6 Bf(t)/Bt. When f(t) is linear in time, this
shift in energy is a constant. The following time depen-
dent phase shifts the energy by the quasienergy Brillouin
zone 6 (2'/T):

2K =- 2z 2z8:—exp i t:exp i z.
T T T

where exp[i(2tt/T)r] is its eigenvalue with r being the
quasitime defined modulo T. a(T) commutes with
B(2tt/T) in Eq. (5) and they form together commuting
finite translations in time and energy, respectively. Their
eigenvalues are the quasienergy [Eq. (3)] and the quasi-
time [Eq. (5)]. The translations a(T) and B(2tt/T) are
similar to the translations in coordinate exp[(i/h )pa] and
momentum exp[ix(2'/a)] which define the quasimomen-
tum and quasicoordinate, respectively [2].

Because of the presence of the electric field, the time
dependent Hamiltonian in Eq. (2) no longer has transla-
tional symmetry of the crystal. However, one can check
that a combination of an energy shift and a translation in

space exists which commutes with the operator 5 in Eq.
(I ). This combination is the known electric translation,
and when extended to the case of a time periodic electric
field it reads [5]

yt, (x, t) =exp ——
J e[k(t')]dt' Iyt, (,)(x),

w~ere

k(t) =k —eEpt/0 —(TeE~/2ttA) sin[(27t/T)t],

e[k(t')] is a single-band energy spectrum for the unper-
turbed crystal [for the Hamiltonian in Eq. (2) with
E(t) =0], yt, t, &(x) is the corresponding Bloch function
for t'=t, and the meaning of the subscript k in yt, (x, t)
will become clear shortly. The Houston function in Eq.
(9) is an approximate one-band time dependent solution
of Eq. (1). It is interesting to notice that yt, (x, t ) are
eigenfunctions of P(a) in Eq. (6) with the eigenvalues
exp(ika),

P(a) y, (x, t) =exp(tka) yk(x, t), (10)

which explains the subscript k in the Houston function
[Eq. (9)]. We now require that yt, (x, t) is also an eigen-
function of the finite translation in time a(T) [this can be
done, when the condition in Eq. (8) is satisfied, because
then a(T) and P(a) commute],

can look for solutions of Eq. (1) that are also eigenfunc-
tions of a(T) and P(a). In particular, eigenfunctions of
a(T) define the quasienergies [Eq. (3)] of the problem.
For finding solutions of Eq. (1) we use the well-known
Houston function [9] which for the case of the periodic
electric field in Eq. (7) assumes the form

4

P(a) =exp —'pa+ ' E(t')dt'
6 6 (6) ittk(x, t+ T) =exp — eT gent, (x,—t) .

2Ã
eEpa =6 g, g =0, 1,2, . . . , (8)

~here g=o corresponds to the case when F.p=o. This
condition means that the Stark ladder spacing [8] for Ep
has to be a multiple of the quasienergy Brillouin zone.
The part linear in time in the phase of P(a) is
exp[(i/6)eaEpt]. By using Eq. (8), this becomes
exp[i(2tr/T)tg]. The latter is nothing else but the power

g of the basic energy translation B(2tr/T) in Eq. (5). It
is therefore seen that the basic translation in energy
B(2tt/T) plays an important role in the definition of P(a)
lil Eq. (6).

Having defined a(T) and P(a) that commute with one
another and both of them commute with 5 in Eq. (1), one

where a is the lattice constant. For simplicity we assume
that E(t) contains only one harmonic in its Fourier ex-
pansion,

2zE(t) =Ep+Eicos t .
T

In general P(a) does not commute with the time transla-
tion a(T) [Eq. (3)], but can be made to commute with it
by putting the following condition on the zero Fourier
component Fp of the electric field

f 2x g
k — — sinO dO.

2z &p a 2z
(12)

In writing Eq. (12), explicit use was made of Eq. (8).
Let us assume for e(k) a tight binding expression e(k)
= ep (6/2) coska, where A is the bandwidth. It then
follows from Eq. (12) for the quasienergy

t 2x eE]a
e(k) = ep —— cos ka —gO— sinO dO2"o a2~/T

eE ~a=ep —( —1)g—J coska,
2 62tt/T

(13)

where Jz is the Bessel function. The result in Eq. (13)
gives the quasienergy of a Bloch electron in a periodic
electric field [Eq. (7)] in the one-band approximation.
This result goes over into the result in Ref. [4] when g=0

By using Eqs. (8) and (9) [from the former equation it
follows that the Bloch function yk1, 1(x) does not change
when t is replaced by t + Tl, one finds for the quasienergy

1 I
~

1 TeEi . 2'e(k) =— e k — eEpt — s—in t dt
T o 6 2@A T
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tir, t, (x, t) =exp — et u,k(x,—t),l (i 4)

where u«(x, t+ T) =u«(x, t) and has the form [see Eq.
(9)]

u, t, (x, t ) =exp et tlri, (x, t )—.l (is)

However, the appearance of the labels e and k in the
solutions of Eq. (1) has nothing to do with the one-band
approximation, and is a completely general feature, con-
nected with the commutation of the commuting transla-
tions a(T) and P(a) [Eqs. (3) and (6)] with the operator
5 in Eq. (1). Any general solution of Eq. (1) can be
chosen to be an eigenfunction of the translations a(T)
and P(a), and correspondingly one should expect a band
structure for the quasienergies as function of k, when a
Bloch electron is subjected to a periodic electric field.

In conclusion, let us remark that solutions of the time
dependent Schrodinger equation for a Bloch electron in a
periodic electric field can be labeled by a quasienergy t..
and an additional label k which gives the eigenvalues of a
finite electric translation P(a) [Eq. (10)l. The latter
translation is a combination of a space translation and a
translation in energy. The space translation is a well-
known operator and forms the basis for Bloch functions.
On the other hand, translations in energy deserve some

or when Eo=0 [see Eq. (8)]. What is striking about the
quasienergy in Eq. (13) is that it is a function of k in very
much the same way as in the absence of the electric field.
Here k varies in the same Brillouin zone as in the pure
Bloch case —tr/a ( k ( tr/a [see Eq. (10)l. The only
diAerence is in the meaning of k: In Eq. (10), k labels
the eigenvalues of the combined electric translation P(a)
while in the Bloch case, k is the quasimomentum. Anoth-
er striking feature of Eq. (13) is the appearance of the
Bessel function in the bandwidth; the latter is a function
of the ratio eE~a/(h, 2tr/T) In p.articular, the bandwidth
vanishes when this ratio is a zero of the Bessel function Jg
(see Ref. [4] for the discussion of an experiment that can
detect this band narrowing).

The explicit result in Eq. (13) for the quasienergy is a
consequence of the one-band approximation for the
Houston function [Eq. (9)]. The wave function corre-
sponding to this quasienergy can be written in the con-
ventional form [3,4]

special consideration. The translation in energy in p(a)
[Eq. (6)] consists of two parts, when the electric field is
given by Eq. (7): exp[(iea/6)Eot] and exp[(iea/i't )
&& (T/2tr)E|sin(2tr/T)t]. The second part commutes with
the operator a(T) [Eq. (3)]. For the first part to com-
mute with a(T), Eo has to satisfy Eq. (8). When the
latter is satisfied, exp[(iea/6)Eot] assumes the form of
B(2tt/T) in Eq. (5) (or a power of it). The two basic
translations for time and energy are therefore a(T) and
B(2tt/T) [Eqs. (3) and (5)]. a(T) is a well-defined
operator in quantum mechanics [6]. Being a multiplica-
tion by a time dependent phase, B(2tt/T) is a well-
defined operation but is not an operator in quantum
mechanics. Similarly, P(a) in Eq. (6) is a well-defined
operation, but is not an operator in quantum mechanics.
a(T) and B(2tt/T) are finite translations in time and en-
ergy and define correspondingly the concepts of quasien-
ergy and quasitime [Eqs. (3) and (5)]. Given a function
of t, p(t), one can define the quasienergy e, quasitime r
function C(e, r) in complete analogy with the kq function
for xp degrees of freedom [10],

r i i/2

C(e, r) = T +exp enT P(—r nT) . —(16)I2x, 6

This transformation has become of wide use in recent
years in signal processing [7].
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