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Seven structurally distinct condensed phases in the phase diagram of water-supported Langmuir
monolayers are explained in the framework of the Landau theory of phase transitions. The present
treatment, which covers two-dimensional hexatic and solid phases and describes the transitions
between them, involves the coupling of three order parameters. One of the parameters governs the
collective tilt of the molecules, while the other two describe one-dimensional "weak crystallization"
along the bond direction and normal to it with the herringbone ordering of the molecular backbone
planes.

PACS numbers: 61.50.Ks, 61.66.Hq, 68.10.—m, 68.35,Rh

Monolayers of amphiphilic molecules on the water
surface (Langmuir monolayers) are two-dimensional fiu-
ids at high temperatures and two-dimensional solids
at low temperatures. At least five structurally dis-
tinct phases are found over the intermediate tempera-
ture range. The first evidence for this rich polymorphism
was the observation of kinks in the surface pressure
area isotherrns [1—3]. Using the isotherm technique,
various amphiphiles were found to show similar sur-
face pressure —temperature phase diagrams containing at
least seven phases. The theoretical phase diagram of the
present paper, Fig. 1, essentially reproduces the general-
ized phase diagram of fatty acid monolayers [4], compiled
from isotherm studies of acids with different chain lengths
by matching up regions of the same shape with regular
shifts of the temperature axis [5].

Although the interpretation of these kinks as phase
transitions was for many years cast into doubt, recent x-
ray diifraction experiments [6—14] have shown that all the
regions of Fig. 1 have different structures. The LS phase
is hexatic with sixfold symmetry and gives rise to just
one triply degenerate first-order x-ray diffraction peak.
The correlation length determined by the half-width of
the peak is of 4—5 intermolecular distances [10]. Fluo-
rescence microscopy of the domains in the coexistence
region with the higher-temperature two-dimensional liq-
uid phase I t (not included in Fig. 1) has revealed the
sixfold axes of the domains [15]. The S phase can be con-
sidered to be derived from the IS phase by orthorhom-
bic distortions accompanying the ordering of the short
axes (backbone planes) of the molecules. It gives two
peaks, one doubly degenerate and one nondegenerate,
each with correlation lengths of about 30 intermolecu-
lar distances. The CS phase gives the resolution-limited
peaks of a two-dimensional solid. As the surface pres-
sure is lowered, transitions occur to the L2, L2, and L2'

phases whose molecules show collective tilt in addition
to orthorhombic distortion. Symmetry arguments based
on the present theory lead us to subdivide the I2 phase
into two phases, L2h, and I2g, with herringbone ordered
and disordered backbone planes, respectively, although
the transition between them has not yet been observed
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FIG. 1. Theoretical phase diagram. Nonzero order param-

eters are indicated for each phase. I, I" are the tempera-
turelike variables and A is the surface pressurelike one. Solid
lines denote the first-order transitions; dashed lines indicate
the second-order ones.

experimentally. The correlation lengths decrease slightly
at the tilting transitions, but change drastically at the
L&-L2h transition. In the Lgh, phase, the nondegenerate
peak shows a correlation length of about 60 intermolecu-
lar distances whereas for the doubly degenerate peak the
correlation length is about 4 times smaller. These differ-
ences in the correlation lengths find a natural explanation
in the theory presented below.

The orders of the transitions were first determined by
isotherm measurements and then confirmed with x-ray
diffraction. The tilting transitions are found to be con-
tinuous whereas the other ones are first order. The phases
12 (I 2h and I 2d in our notation) and Lz of fatty acids
differ in direction of the tilt with respect to the bond
orientations. Molecules tilt to the nearest neighbor in
phase L2 and to the next-nearest neighbor in phase L2,
the swiveling transition between these phases being ob-
viously of the first order.

Phase transitions in Langmuir monolayers have been
the subject of a number of computer simulations and
molecular models (see, e.g. , Ref. [16], references and dis-
cussion therein). While these methods provide detailed
information on the behavior of the monolayer at par-
ticular phase transitions, they do not give an overview.
The Landau theory of phase transitions [17] gives a
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symmetry-based, model-independent description of pos-
sible structural changes in the system. It has been em-

ployed recently [18] to analyze some of the phase transi-
tions in Langmuir monolayers. The transitions between
four of the condensed phases (LS, S, Lz, and L2) were
explained by the coupling of two order parameters, de-
scribing the collective tilt of the molecules and the her-
ringbone ordering of their backbone planes, respectively.
However, the phases were treated as crystalline, and the
considerable differences in correlation length were not
taken into account.

Within the framework of the Landau theory, it is pos-
sible to consider changes of translational order from short
range to long range as "weak crystallization" transitions.
Landau himself used the amplitude of the periodic den-
sity wave appearing at the crystallization of a liquid as an
order parameter to prove that the transition from liquid
to crystal must always be first order [19]. Weak crystal-
lization theory is applicable if the discontinuities at the
transition point are small and if all the wave vectors in-
volved in the transition have equal length. An example
where both requirements are satisfied is the formation of
smectic liquid crystals. Interest in weak crystallization
theory was stimulated by Alexander and McTague [20],
who argued that the bcc structure is preferred during the
three-dimensional crystallization of a liquid. Albrecht et
at. [21] considered crystallization of phospholipid rnono-
layers. In the present work, the I andau theory of phase
transitions in Langmuir monolayers is developed taking
into account differences in the translational order of the
phases, thus allowing comparison with the x-ray experi-
mental data on both diffraction peak positions and their
widths.

We consider the progressive ordering of a Langmuir
rnonolayer starting from the least ordered condensed
phase, i.e. , the LS phase. As a liquid, even if anisotropic,
it possesses continuous translation symmetry. In ad-
dition, it displays long-range orientational order of the
point symmetry group C6„, generated by a sixfold sym-
metry axis and two orthogonal symmetry planes normal
to the plane of the monolayer. The collective tilt of the
molecules is described by the in-plane components n, n„
of the unit vector n directed along the long axes of the
molecules. It is convenient to convert to polar coordi-
nates: n = g cos P, n„= g sin P. The free energy expan-
sion must be invariant with respect to reflection in sym-
metry planes (which changes the sign of nz or n„), and
to the sixfold rotation (which transforms the azimuthal
angle P ~ P+ vr/3). The leading terms in the expansion
are

of @„over P gives P = arm/3 (m is integer). Hence the
tilt occurs in the direction to the nearest neighbor, as
at the observed transition LS-L2d. If D changes sign,
the tilt direction varies. We do not touch this problem
which is considered, with fluctuation corrections, in Ref.
[22]. Figure 2(a) illustrates symmetry of the phase (q g
O, P = 0).

The structural data are not consistent with 2D nemat-
iclike ordering of the molecular backbone planes [18]. To
demonstrate this, consider the nematic order parameter
Q—a symmetrical traceless 2D tensor. The two indepen-
dent components of Q can be represented in polar coor-
dinates as Q —

Q&&
——(cosa, 2Q &

——(sinn, where
o. = 0 when the nematic director points along the bonds
and n = vr when the director is perpendicular to them. A
sixfold rotation transforms the components of the second-
rank tensor according to o. ~ n + 2vr/3, and the free
energy expansion is

C ~
= C( —K( cos 3n + L( —V(q cos(n —2P). (2)

The induced nematic order ( g at the LS L2d tran-si-
tion is described by the first and the last terms of Eq. (2).
The free energy is minimum at o. = 0 for V ) 0, in ac-
cordance with the observation for fatty acids. The spon-
taneous ordering from ( = 0 to (p = K/2L takes place
as C decreases to Cp = K /4L. The transition is first
order due to the cubic term in Eq. (2). When K & 0 the
minimum occurs at 0, = 0, corresponding to the nematic
order along the bond direction at the LS-S transition.
At the tilting transition S-L2 occurring at ( = (p and
a = 0, P should be zero, as it has already been shown
that V ) 0. However, experimentally in the phase L&

[9,10], the molecules tilt to the next-nearest neighbor,
i.e. , P = vr/2. Therefore, the structural data for the two
tilting transitions LS-L2 and S-L2 cannot be explained
simultaneously with 2D nematic ordering.

Crystallization phase transitions are described by
terms of the form ui, , exp(ik~ r) in the expansion for
the density function; weak crystallization is the limiting
case when all the wave vectors taking part have equal
length [19]. The only invariant terms in the free energy
expansion over the corresponding order parameters P~
are those combinations of the P~ 's with k vectors consti-

e s r s + r~g~+~r+
%p+g%

4„=Aq + Brl —Dq cos6P .

When B & 0, Eq. (1) describes a second-order tilting
transition at A = 0. The last term in Eq. (1) is small in
comparison with the other ones but is the lowest-order
term depending on the angle p. For D & 0, minimization

I IG. 2. Molecular arrangements for collective tilt of the
molecules (a) and one-dimensional crystallization with the
crystallization waves along (b) and normally (c) to the bond
direction.
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tuting a closed polygon (P. k~ = 0). Since the experi-
mentally observed phases possess orthorhombic symme-
try, we can restrict ourselves by k vectors lying in the
symmetry planes. The sixfold rotation C6 generates the
star consisting of six vectors k~+i ——C6k~. The order
parameter has six components P~, and since the density
function P. ui, , exp(i' . r) must always be real, it fol-
lows that P~+s

——P'. It is convenient to designate Pi ——

li exp(ipi), P2 —p2 exp(ip2), Ps = ps exp(i')
pi exp( —ipi), Ps = p2 exp( —ip2), Ps = ps exp( —its).

There exist two representations for each star k~, one
which preserves the sign of the order parameter on reHec-
tion in the symmetry plane containing the wave vector,
and one which changes it. The former representation
gives the free energy expansion

4 = PP + QP1'P2Ps cos(7i + P2 + Ps)
+&V '+ S(V i + ~2 + V'.); (3)

here p2 = Ip2i + p2+ ps2. The cubic term in Eq. (3) gives
rise to a first-order transition with equal amplitudes for
all of the waves: pq ——p2 ——p3. This therefore describes
a first-order crystallization phase transition from a hex-
atic to a hexagonal crystal. It does not occur in Langmuir
monolayers and so is not of interest for the present work.

The representation which changes the sign of the order
parameter on the reHection mentioned above allows only
even powers of the order parameter in the free energy
expansion:

C'~ = F~'+ Gi~'+ G2(~i+ V'+ Vs)
+Hi~'+ H2V'(~i+ &2+ Vs)

2 2 2+H3v»v 2v 3- (4)

If y2 is kept fixed, the minimum of (4) with respect
to the components y~ depends on the sign of G2. For
G2 ) 0 one has pi ——p2 ——&p3. This case preserves the
hexagonal symmetry and hence is not of interest for the
present work. When Gp ( 0, the symmetry is broken:
'p] —(fp p2 —p3 ——0, meaning that crystallization oc-
curs only in one dimension. The ordered phase consists of
equidistantly spaced rows of the molecules, with the order
parameter alternating from one row to the next. Within
a row, the molecules possess liquidlike order. The order
parameter &p describes either antiferroelectric ordering of
transverse vectors of the molecules or alternating orien-
tations of the 2D nematic director. The latter case corre-
sponds to the herringbone order commonly encountered
in 3D packings of aliphatic chain derivatives [23] as well
as in ordered smectic liquid crystals [24]. It is illustrated
in Figs. 2(b) and 2(c) for crystallization directions par-
allel and normal to the bond direction. The dashed lines
indicate periodicity, and the order within the crystalline
rows is liquidlike.

The phases shown in Figs. 2(b) and 2(c) give rise to
different low-order diffraction peaks. In Fig. 2(b), the
bonds do not lie in the crystalline rows. This gives broad

first-order diffraction peaks, reflecting the liquidlike or-
der. In contrast, the diffraction pattern of the phase
shown in Fig. 2(c) shows one narrow peak due to diffrac-
tion from the crystalline rows, while the doubly degen-
erate peak caused by the short-range translational order
within the rows is broad. Comparing these results with
the experimental data on the diffraction peak widths, we
can attribute Fig. 2(b) to the phases S and L2 whereas
Fig. 2(c) corresponds to the phase I2h possessing consid-
erably different widths of the peaks. Clearly, one crystal-
lization order parameter is inadequate, and it is necessary
to deal with order parameters describing the transitions
to phases with mutually orthogonal directions of crystal-
lization.

We preserve the letter p for the order parameter of the
phase shown in Fig. 2(b). For one crystallization wave

(pi = p, p2 = Ips = 0) Eq. (4) reduces to

C~ = Fy —Gp +Hp,
with G = —(Gi + G2) and H = Hi +H2+ Hs. To obtain
the first-order transition LS Sin L-angmuir monolayers,
we take the coeKcients F, G, H to be positive. The co-
efFicient F is considered to be temperature dependent
whereas G and H are taken to be constant. As F de-
creases to the value Fo = G /4H, a first-order transition
occurs from p = 0 to p = &po with &p20 ——G/2H. The
transition from the hexatic phase to the phase shown in
Fig. 2(c) is described by the order parameter g possessing
the same symmetry and the same free energy expansion,

Flq2 Gl@4 + Hips

Accordingly, the first-order transition at Fo ——G' /4H'
gives $0 ——G'/2H'. The coupling between Cp and @ de-
scribed by the product of the invariants, F2@2, does not
qualitatively influence the transitions and is omitted from
subsequent consideration.

The coupling between the order parameter pz and the
tilt is described by the invariant

Ipii1 cos 2P + p2i1 cos(2P + 2ir/3)

+Psi12 cos(2P + 47r/3). (7)
Taking yi ——p, &p2

——p3 ——0, adding the product of the
invariants p and g and analogous coupling terms for
the order parameter g one has finally

C~qq
——(I&p + I'g )g + (J&p —J'Q )g cos2P. (8)

The coupling between these three order parameters
gives a large variety of phase diagrams, depending on the
relationships between the coeKcients in the free energy
expansion. Our aim is to explain the experimental phase
diagram of the monolayers of amphiphilic molecules. The
variables in the theoretical phase diagram, Fig. 1, are the
coeKcients A, F, and F' of the lowest-order terms in the
free energy expansions over corresponding order param-
eters; all other coeKcients are taken to be constant. The
most symmetrical phase, the hexatic LS, occurs when
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A, F, and F' are sufficiently large. As F decreases to
the value Fo ——G /4H, a first-order transition occurs
at which the backbone planes order, giving the S phase.
Based on the x-ray data, we have identified this transition
as being one-dimensional crystallization with the crystal-
lization wave along the bond direction [Fig. 2(b)]. The
second-order tilting phase transition at the line A = 0
leads to the phase L2g with short-range translational or-
der. The tilting phase transition S-L2 occurs at &p = po
and g = 0. For J & 0 Eq. (8) gives p = vr/2 (tilt
to the next-nearest neighbor) in the L2 phase, in agree-
ment with the experiment. Then the lowest-order term
of Eq. (1) transforms to (A —Ao)rl with Ao = (J—I)&p .
The line S-L2 is shifted by Ao with respect to the line
LS Lqd. T-he analysis of the transitions between these
phases is quite similar to that performed in Ref. [18] for
the transitions between crystalline phases since the free
energy expansions are the same.

As the temperature decreases, the subsequent crys-
tallization over the order parameter Q occurs, giving
rise to the transition S-CS at suKciently large pressures
(A & Ao). The phase CS possesses crystallization waves
in two orthogonal directions and is therefore a 2D crys-
tal. The transition CS-Lz is the tilting phase transition
in the crystalline phase. The tilt is towards the near-
est neighbor, as observed, when Jp ( J'g in Eq. (8).
The swiveling transition Lz-L2h occurs as the tilt angle

g increases, driven by the competition between the order
parameters y and 1t. The free energy has local minima
at (p g 0, 1' = 0) and (&p = 0, $ j 0). Just after S L'2-
transition the first minimum is obviously deeper. How-
ever, further behavior depends on the relative values of
the coeKcients in the free energy expansion. If the or-
der parameter g were nonzero, the coupling (8) would
give P = 0 for J' & 0 and would reduce F' in Eq. (6)
to F' = F' —(J' —I')rl~. As the tilt angle rl increases,
F' reaches the value Fo and the free energy in the local
minimum at (p = O, g g 0, P = 0) becomes negative.
Further increase of g makes this minimum deeper than
the rninimurn at (y g 0, @ = 0, P = 7r/2). The observed
simultaneous change of the tilt direction and the corre-
lation lengths at L2-L2h transition is thus explained.

In summary, symmetry considerations of the Landau
theory allow the hexatic phase to crystallize in only two
ways: first, direct crystallization to a hexagonal 2D crys-
tal and second, one-dimensional crystallization by order-
ing of some molecular degree of freedom (the backbone

planes in the present case). The rich polymorphism of
Langmuir monolayers is due to the coupling of 1D crys-
tallization with the collective tilt of the molecules.
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