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Phase Slip and Phase-Slip Cascades in He Superflow through a Small Orifice
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The behavior of quantized vortex filaments subject to flow through an idealized orifice is investigated.
Small loops nucleated at the wall are entrained and stretched by the diverging flow of the orifice, leading
to individual phase-slip events. A macroscopic remanent vortex, however, can repeatedly give rise to a
cascade of phase slips draining large amounts of energy from the flow field.

PACS numbers: 67.40.Hf, 47.37.+q, 67.40.Vs

x =acositi[(& +1)(1—
ti )]'

y =a sing[(& + 1)(1—
rl )] '

z =arrl.

(la)

(1c)

For any particular sheet ~q~ =r)p, the orifice is a hyper-

The onset of dissipation in superfluid He is a problem
which has been studied for many decades. Recently, a
series of brilliant experiments [1-6] have shown that,
when He is made to flow through a micron-size orifice,
dissipation first occurs in the form of discrete events, each
of which takes an identical amount of energy from the
applied flow field. The current interpretation of such
events is that single, microscopically nucleated quantized
vortex loops somehow interact with the applied flow so as
to grow across the orifice, crossing all of the streamlines
of the applied flow in the process. Such a "phase-slip"
event changes the velocity potential diA'erence across the
orifice by the quantum of circulation x, and must thus ex-
tract energy from the flow field.

It is useful to divide this problem into two distinct
parts. First, one needs to consider how microscopic vor-
tex loops can in fact fluctuate into the system, either
thermally or quantum mechanically. Although this issue
has received most of the attention, the lack of a micro-
scopic theory of the He superfluid state makes it a prob-
lematic one. Second, one needs to understand how a vor-
tex loop interacts with the fiow field to produce the ob-
served behavior. Here one is on firmer ground, since the
last ten years have taught us how to treat this kind of
problem using classical vortex dynamics [7]. As it hap-
pens, the orifice experiments exhibit other types of behav-
ior, such as multiple phase slips, and phase-slip cascades
[3,8,9] which remove a large amount of liow energy in

what is apparently a single dynamical event. These can-
not be explained by the loop-nucleation ansatz, making it
all the more intriguing to investigate the general features
of vortex-filament dynamics in an orifice.

The orifices used in the actual experiments are of a
complicated and only roughly characterized geometry.
On the assumption that much of the observed behavior is
generic to orifice flow, however, we have chosen to study
an idealized orifice consisting of surfaces of constant r) in

the oblate spheroidal coordinate system

and that one can make the edges of the hole as singular
as one pleases by going to the limit go 0. The motion s
of the vortex filament is determined by the condition that
the force f exerted by the vortex on the fluid must equal
the frictional force exerted by the excitation gas on the
vortex core. This leads to the familiar equation [7],

s —v, +ps'x s"+as'x (v„—v, —ps'& s"), (3)

where the primes denote the derivative of the vortex curve
s(g, r ) with respect to the arc length, p = —(x/4x)
xin(~s"~ap) is a logarithmic cutoA' parameter involving
the quantum of circulation x and the vortex core radius
ao, and the term in e describes the frictional eA'ect on the
vortex of the excitation gas moving with an average ve-

(a) (c)

FIG. 1. Two ways in which a loop placed in an orifice can
develop. (a) and (b) show the top and side view of the develop-
ment of a loop 0.99 times the neutral size placed in the symme-
try plane, while (c) and (d) show the behavior of a loop 1.0I
times neutral size. The flow is through the orifice in the z direc-
tion. For this calculation, vp(0, 0,0) =2, r)0=0.5, and a=0.01.
The reduced time interval between vortex configurations is 0.10
in (a) and (b), and 0.20 in (c) and (d).

boloid of revolution (see Fig. 1), with an inner opening of
radius a(1 —rip) '~ . This geometry has the advantages
that the applied fiow through the orifice is known [10],
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locity v„. In considering Aow through a very small
orifice, v„can be assumed to be zero. All calculations de-
scribed here were done in terms of reduced velocities
vp =v/P and times rp=Pr, with the focal radius a in Eqs.
(1) set to 1. Using the scaling properties [11]of Eq. (3)
and ignoring a minor logarithmic correction, the corre-
sponding velocities and times are Pvp/a and a tp/P for a
hole with focal radius a.

Equation (3) is the motion that a curved vortex induces
locally on itself. Corrections to this equation arise from
velocity fields contributed by the more remote parts of the
vortex, by other vortices, and by additional fields which
must be introduced in order to satisfy the condition
v, n =0 at the solid boundaries. These corrections have
been neglected because they are extremely tedious to cal-
culate and typically contribute only a 10'%%uo to 20% correc-
tion to the self-induced motion. The exception to this is
when a vortex approaches another vortex or a boundary
very closely. The ensuing nonlocal development can be
well modeled in terms of an instantaneous vortex-vortex
or vortex-boundary reconnection. With this reconnection
ansatz, Eq. (3) becomes reasonably accurate, while re-
taining all of the interesting physics, and is thus particu-
larly well suited for investigations where conceptual in-

sight rather than a high degree of numerical accuracy is
the goal. These issues are discussed in full in Ref. [7],
where a fully nonlocal treatment of a vortex in a compli-
cated geometry is given. On the basis of this earlier
work, the results obtained here are expected to be quali-
tatively robust, but to be subject to errors of order 20%.
Such errors are unimportant at the current stage of the
subject.

For the calculations presented here, the orifice is as-
sumed to be locally smooth: The end of a vortex (which
must enter the boundary perpendicularly) then slides
along the surface with a velocity determined by reffecting
the vortex in the boundary [7]. The cutoff parameter P in

Eq. (3) has been treated as a constant, in accord with the
idea that numerical accuracy is unimportant at this stage.
Finally, the calculations have been carried out with a
small but finite a. This makes the numerical algorithm
used to integrate Eq. (3) absolutely stable, without
aff ecting the motion significantly.

We first investigate the nature of the single phase slips,
which presumably result from the amplification of micro-
scopic vortices nucleated as tiny half loops growing from
the boundary. Calculations of the evolution of such a
vortex loop, done in the limit of small a, show the follow-
ing behavior. We consider a tiny loop originally lying in

the z=0 symmetry plane of the orifice (the velocities are
greatest here, making it the most likely environment for
nucleation). For given U, (0,0,0), a, and gp, there exists a
stationary loop configuration in this plane, determined by
the condition v, (r)+Ps'xs"=0. That is, the vortex
starts out normally from the boundary and curves back to
it so that its self-induced velocity exactly cancels the local
flow field along its entire length. This neutral con-
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figuration maximizes the energy, and thus corresponds to
the peak of the free energy barrier for vortex nucleation.
A loop which is smaller than neutral has a larger self-
induced velocity Ps'xs" and will therefore propagate to
—~ as shown in Figs. 1(a) and 1(b). A loop larger than
neutral, on the other hand, will be convected in the flow

direction and enlarged by the diverging v, field, as shown

in Figs. 1(c) and 1(d). Eventually, its self-induced
motion will carry it across all of the streamlines of v„ the
ends of the vortex passing around the orifice as shown.

It is of interest to ask how "dissipation" can be ob-
served in the limit of very small a, in which negligible dis-

sipative forces are acting in the system. One can show on

very general grounds [12] that the energy which must be
supplied by external forces acting on the vortex in order
to create a loop such as that shown in Fig. l is

E =—p vdV+pK v, dA,
2 &s

(4)

where 5 is any surface bounded by the loop, and where
the velocity field v=v, +v„has been written as the sum

of the applied Aow field and the velocity field due to the
vortex. The first term of this equation represents the ki-

netic energy stored in the vortex field, while the second
term represents energy added to the applied flow field as
the loop grows. The second term, which is just the mass
flux of the applied Aow through the loop, can be made
negative by orienting the loop properly, so that as the
loop grows it sucks energy out of the Aow field. In the
present instance, when the external forces acting on the
vortex are negligible, E cannot change as the vortex
evolves. However, if the Aow is such as to stretch the vor-
tex loop, the first term on the right of Eq. (4) will in-

crease at the expense of the second, which must become
more negative. Thus, kinetic energy will be taken out of
the large-scale Aow field and stored in the more localized
vortex field. No real dissipation occurs [13],but a loss of
Aow energy equal to x times the mass Aux through the
hole will nevertheless be observed every time a vortex
loop undergoes the evolution of Figs. 1(c) and 1(d) and

propagates to infinity. Since it requires vortex stretching,
this "frictionless dissipation" mechanism is peculiar to
diverging flows such as those found in an orifice.

An upper limit for the time necessary to complete a
phase-slip event can be estimated from a simple argu-
ment, which will be presented elsewhere. For a slitlike
orifice of short dimension d and long dimension l, the
characteristic crossing time is approximately

l dtc= Va
zp

where V, is the typical value of the Aow velocity through
the slit. The increase of t, with V, reAects the fact that
the loop grows to a larger size as V, becomes bigger, de-
creasing the self-induced velocity which carries it across
the orifice. For a circular orifice of radius ro, one can
write d=l =2rp. Even though Eq. (5) then becomes very
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approximate, the resulting estimate is in reasonable
agreement with our calculations. If one assumes a criti-
cal velocity of 500 cms ', the estimated crossing times
for the slit geometries used in Refs. [1-6] are on the or-
der of a millisecond. This is tantalizingly close to the
best experimental time resolution quoted [4]. While the
phase slips measured so far seem instantaneous, their
temporal evolution may become accessible if the time
resolution can be modestly improved, or if the phase slips
can be observed in larger orifices [14].

Suppose now that instead of amplifying a small vortex
loop, the flow washes one end of a preexisting, remanent
vortex into the orifice, the other end of the vortex being
pinned somewhere far away. We have investigated the
behavior of such an object, and find the very interesting
result that it settles into a cyclic motion, the end of the
vortex traveling around the hole and the vortex balloon-
ing outward as shown in Figs. 2(a) and 2(b). Once every
revolution, the vortex touches the boundary and breaks
oA an independent loop which then propagates away, as
shown in Figs. 2(c) and 2(d). The calculation shown in

Fig. 2 is for a rather low velocity. A calculation with a
velocity more characteristic of the experiments (Fig. 3)
reveals that what one has here is a vortex mill, somewhat
similar in spirit and appearance to the vortex mill previ-
ously proposed [15] as a mechanism for initiating and
maintaining superfluid turbulence in a channel. The
significant diff'erence is that in the case of the channel,

the outward growth of the vortex spiral is caused by the
friction term (i.e. , a&0), whereas here vortex stretching
due to the diverging flow in the orifice is the primary
mechanism.

It is now easy to see how phase-slip cascades can occur.
Imagine a remanent vortex with one end pinned by sur-
face roughness near the orifice. At some time the vortex
breaks loose (perhaps because it is impacted by the prop-
agating loop created by a previous phase-slip event) and
is washed into the hole. It then becomes a vortex mill,
generating a continuous stream of phase-slip events, each
one of which extracts a unit of energy from the applied
flow field. In the actual experiments, the flow field is pro-
vided by exciting a Helmholtz oscillation across the
orifice. Thus the flow alternates in direction, albeit with a
period long compared to t, . When a simple nucleated
phase slip occurs, one unit of energy is extracted and the
amplitude of the oscillation decreases by a small amount.
When the vortex mill goes into operation, however, it will
quickly drain away energy until the flow velocity has been
reduced to the point at which the active end of the vortex
repins and the mill stops. The Helmholtz amplitude thus
collapses more or less catastrophically, depending on the
details of the situation. The elegant feature of this pro-
cess is that the vortex which mediated the cascade
remains behind, ready to break loose again and repeat its
performance once the oscillation amplitude has recovered.
Thus it requires only a single remanent vortex to have re-
peated cascades.

It is interesting to note the observations of Varoquaux,
Meisel, and Avenel [3], who report that cascades are ini-
tiated only when the How is in one particular direction in

their orifice, and that the initiation of each cascade is im-
mediately preceded by a simple phase slip occurring dur-
ing the previous half cycle, when the flow is in the oppo-
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FIG. 2. Top and side views of the cyclic behavior of a
remanent vortex washed into the orifice. (a) and (b) show the
first half of the cycle. (c) and (d) start at the moment when the
bulge which the vortex has developed touches the side of the
orifice and reconnects, creating a loop that propagates away.
The rotation of the vortex is counterclockwise in (a) and (c).
The calculation was done with the same parameters as Fig. l,
the time step here being h, to=0.20.

FIG. 3. Perspective view of the vortex mill when vo(0, 0,0)
=8 and the vortex comes in from off center. The motion is that
of an outwardly growing spiral which periodically touches the
boundary, creating a loop which then propagates away.
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site direction. This is the behavior one would expect if
only a single remanent vortex on one side of the orifice
were involved, and if this vortex were broken loose by a
collision with a vortex loop nucleated on the previous half
cycle and now propagating away from the orifice. A
second interesting point to be mentioned is that the cas-
cade process and the single phase-slip process may be ex-
pected to scale differently with the size of the orifice. The
nucleation process presumably depends primarily on the
Aow velocity at the surface, so that the critical velocity
for the onset of single events should not depend very
much on the hole size. The velocities describing the cas-
cade process, on the other hand, should scale inversely as
the hole size, if it is assumed that all features of the
orifice are scaled in a corresponding manner. This im-

plies, at least qualitatively, that the phase-slip cascades
should dominate for large orifices, but become increasing-
ly rare and eventually disappear altogether as the orifice
is made smaller and the nucleated single phase-slip events
dominate [16].

Although the complications arising from irregular hole
geometries, time-dependent fields, and random loop nu-
cleations still need to be factored in, it is possible to con-
struct quite complex Auid dynamical behavior closely
resembling that observed experimentally, using only the
two basic mechanisms invoked here. In particular, the
elucidation of the phase-slip cascade phenomenon as aris-
ing from the action of a single remanent vortex appears
to be of value. It should now be possible to probe more
complicated phenomena, such as multiple phase slips, the
biasing of nucleation by nearby pinned vortices, and the
transition to superfluid turbulence by carrying out more
ambitious calculations in tandem with experiment.
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