VOLUME 71, NUMBER 16

PHYSICAL REVIEW LETTERS

18 OCTOBER 1993

Decay of Vorticity in Homogeneous Turbulence

Michael R. Smith,' Russell J. Donnelly,' Nigel Goldenfeld,? and W. F. Vinen?
'Department of Physics, University of Oregon, Eugene, Oregon 97403
2Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign,
1110 West Green Street, Urbana, Illinois 61801

3School of Physics and Space Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
(Received 13 April 1993)

We report on observations of turbulent behavior made without requiring the use of Taylor’s “frozen
turbulence” hypothesis. Initially, a towed grid generates homogeneous turbulence of grid Reynolds
number of order 10° within a stationary channel filled with helium II. The subsequent decay in time ¢ of
the line density of quantum vortices is measured by second sound attenuation, and the associated rms
vorticity w follows the behavior expected of a classical fluid with @ ~t ~¥2, consistent with the notion of
a coupled turbulent state of helium II. This technique also yields the time dependence of the Kolmo-

gorov microscale.

PACS numbers: 47.37.+q, 47.27.Gs, 67.40.Vs

The study of decaying homogeneous isotropic tur-
bulence occupies a unique place in fluid dynamics. The
theory was given its modern basis by the influential work
of Taylor and Kolmogorov over 50 years ago [1-3]. The
experiments, of which there are many, are usually per-
formed in a wind tunnel by blowing air through a grid
and studying the way the turbulence decays as it is car-
ried downstream [4-6]. The comparison between theory
and experiment specifically assumes the equivalence of
the downstream velocity field with the late time velocity
field in an isotropic, homogeneous turbulent fluid (the
so-called frozen turbulence hypothesis of G.I. Taylor),
9/8t = —U8/dx where U is the mean velocity of the air-
stream. The decay of mean-square velocity fluctuations
u'? is determined from spatial measurements down the
tunnel, and from these data the mean-square vorticity »?
can be inferred from general considerations of the rate of
turbulent energy decay due to viscosity:
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where v is the kinematic viscosity. The validity of the
frozen turbulence hypothesis rests on the assumption
U>u' and its limitations are discussed on p. 46 of Ref.
[5]. We emphasize, however, that Eq. (1) is valid in-
dependent of Taylor’s frozen turbulence hypothesis.

The purpose of this Letter is to report a novel type of
experiment, where the turbulence is created by towing a
grid through a stationary sample of helium II. This pro-
duces a homogeneous turbulent state whose decay can be
easily observed. The kinematic viscosity v of helium II,
based on the normal fluid viscosity and total density, is
nearly 3 orders of magnitude smaller than air, allowing
Reynolds numbers of order 103 to be achieved in a small
(1 cmx1 cm) channel. At high Reynolds numbers, both
experimental results [7,8] and theoretical arguments [9]
suggest that the isothermal flow of helium II is classical,
with the normal and superfluid components coupled on
sufficiently large length scales. We exploit this observa-

0031-9007/93/71(16)/2583(4)$06.00

tion to measure the rms vorticity directly by observing the
attenuation of second sound [7]. As we shall show, this
experiment is completely different from studies of tur-
bulence in helium II created by thermally induced
counterflow of the normal and superfluids, which also
have a history of over 50 years [7].

In Taylor’s and Kolmogorov’s original scaling argu-
ments [1,2], the turbulent eddies have their energy distri-
buted over a wide range of scales /. The largest corre-
spond in our case to the size of the channel. Most of the
energy of the flow is concentrated in energy-containing
eddies whose scale /, is not much smaller than the chan-
nel size. At high enough Reynolds numbers Rey
=Uly/v, where U is the grid velocity (typically 50
cm/sec), a long cascade of eddy scales are excited and
only on the smallest scales is the shear high enough to
cause viscous dissipation. This scale 71, the Kolmogorov
length, is defined by a Reynolds number Rey =vn/v=1,
where v is the characteristic velocity of eddies on the
scale n. The energy dissipation per unit mass & occurs
around this scale and is supplied by the energy-containing
eddies at a scale /.. Dimensional reasoning then suggests
that [1-3]

e=gu"/l, , )

where g is expected to be a constant of order unity
[2,10,11].

During the decay of turbulence, eddies grow in time
with a power law close to one-half [3,10] until the in-
tegral scale /, is of the order of the characteristic dimen-
sion of the channel (1 cm). Thus, even if /, were initially
not of order the dimensions of the channel, the accepted
growth law of Ref. [10] (assuming it is applicable), and
the parameters of the experiment given in Table I, would
imply that after about 4 sec the growth of /, will saturate.
A detailed analysis shows that the resulting time depen-
dence of w would be indistinguishable from our data in
the time regime discussed below. Thus in order to pro-
vide a simple expression for the time dependence of the
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TABLE I. Quantities deduced from our decay experiment.
T=1.647 K, Rey=93000 (U=50 cm/sec), v=897x10?
cm?/sec.

Line density at 1 sec L 4%10%cm 2
Vorticity o=xL 400 sec !
Dissipation e=vw? 14.4 cm?sec 3

Quantities at the dissipation scale

Kolmogorov microscale n=W3e)' 4.74x10 "*cm
Velocity scale v="_(ve)/* 0.189 cmsec ™!
Time scale 7 =(v/e)' 2.5%10 73 sec
Kinetic energy density q=(3/2)v? 0.054 cm?sec ~2

Taylor microscale A=(15v/e) 24" 2.35%10 "2 cm

Microscale Reynolds number Ry =u'A/v 634

Quantities at the energy-containing eddy scale
Eddy scale I 1 cm
Velocity scale w'=U/)"Pv  2.42 cmsec ™!
Kinetic energy density qg=(/2)u" 8.78 cm?sec 2
Eddy viscosity Viurb =leut' 2.42 cm?2sec ~!
Time scale T =l/u' 0.413 sec
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FIG. 1. (a) Layout of apparatus used to study grid tur-
bulence. (i) Vacuum seal, (ii) 5/16 rod, (iii) grid, (iv) germani-
um thermometer, (v) counterflow heater, (vi) second sound
transducer pair, and (vii) stepper motor. (b) Detail of grid con-
struction.
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vorticity, without making further assumptions about the
applicability of Ref. [10] to our experiment, we will make
the approximation that /, is a constant, in which case the
vorticity is expected from (1) and (2) to be well described

by
2/371 —3/2 1/2 /
e zm] } - [z} E/
I oo
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We will see that this simple formula is a good representa-
tion of the data, providing a useful, self-consistent inter-
pretation. Given the uncertainties in the precise initial
conditions and the theory of the decay of turbulence, we
did not feel a more complicated analysis was warranted.

Our apparatus, shown schematically in Fig. 1(a), con-
sists of a brass channel with a 1 cm square cross section,
suspended vertically in a bath of liquid helium II. The
channel is closed at the bottom end, and instrumented
along its length with pairs of vibrating superleak second
sound transducers. One of our grids, depicted in plan
view in Fig. 1(b), was machined from a 1.5 mm thick
brass wafer, and the resulting tines are 1.67 mm apart.
The cross-sectional area of the grid riding within the
channel amounts to less than 0.35 cm? and is suspended
at the end of a 5/32 in. rod. The rod passes out of the top
of the channel and exits the cryostat via a sliding vacuum
seal. The end of the rod is attached to a cable and drum
assembly linked to a stepper motor. Besides position ac-
curacy, the stepper motor provides the capability to
preselect velocity and acceleration as grid motion param-
eters. Thus, we could draw the grid along the channel
and observe the decay in the resulting turbulent flow.

The protocol was to pull the grid-rod assembly at vari-
ous velocities from the bottom to the top of the channel
and observe the decay in the resulting turbulent field at
some sensor pair. The kinematics were calculated and
grid motion initiated in such a way that the grid passed a
reference position exactly 2 sec after the instruments be-
gan recording data. This was defined to be the point =0
in the data stream. The determination of the reference
position and many other details of the experiment are de-
scribed in a recent thesis [12].

Second sound attenuation allows the measurement of
the length L of quantized vortex line per unit volume [7].
In a homogeneous field, the rms vorticity of the superfluid
component is given by

ws=xL , (4)

where x=h/m =9.97%x10 "% cm?/sec is the quantum of
circulation and m is the mass of the helium atom. We will
assume that on sufficiently large scales (greater than the
Kolmogorov length of the normal fluid), w; is approxi-
mately equal to that of the normal fluid w,; then @, can
be taken to be the rms vorticity @ in the path of the
second sound beam. With this assumption, a self-
consistent picture of the vorticity decay is obtained. Our
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assumption is based on the following considerations.
There is a body of experimental data which suggests that
the two fluids are coupled together at high Reynolds
numbers [7,8]. It follows that kL = w,: If this inequality
did not hold then the superfluid could not have enough
vorticity to match that of the normal fluid.

The equality w, =, holds if the length of line per unit
volume is the minimum necessary to create an average
superfluid vorticity equal to w,. In principle, @, could be
greater than w,, but will match it dynamically if any ex-
cess superfluid vorticity decays on a time scale 7, compa-
rable with the quickest time scale 7, associated with dis-
sipation in the normal fluid, which occurs on the Kolmo-
gorov scale i, namely, 7, =7n2/v. The decay of line den-
sity in the superfluid is known to proceed at a rate given
by dL/dt=xL? [13]. The time constant associated with
this decay is 7,=1/xL =/2/x, where [ is the vortex
line spacing, of order 7. Thus 7,/t,=Vv/k=1 [14].
Hence we conclude a priori that our assumption is
reasonable.

Since we were guided by classical theory to seek power
law behavior, we performed many of our initial investiga-
tions by plotting the decay results in log-log form. Three
distinct regions stand out in the averaged data plotted in
Fig. 2, and are typical of the data. The rounding seen in
the lower panel of Fig. 2 at small times is consistent with

-1 0 1 2
Log, (time)

FIG. 2. An illustration of the dramatic differences in decay
of two turbulent flows of the same initial vorticity produced by
a counterflow (upper curve) and towed grid (lower curve). The
experimental channel was identical in both cases except the grid
was removed for the counterflow experiment. The form of the
upper curve has been discussed by Schwarz and Rozen [15] and
by Smith [12]. At long times, the decays appear to coincide.

Eq. (3). There follows a region of clear power law behav-
ior. At large times, the decay typically evolves into a
third regime as the vorticity drops below approximately 4
sec "', This third regime of decay is characterized by
small turbulent intensities, and the measurements are
especially affected by instrument noise. We do not fully
understand this region which could involve such matters
as uncoupling of the normal and superfluid components.
From the log-log plot, the middle period of decay sug-
gests power law behavior between 1 to 5 sec. To extract
the decay exponent m in the simple power law w =t ~"™,
we plotted o~/ vs ¢ adjusting m until the data were as
close as possible to a straight line. This eliminated any
effect on m due to a small systematic uncertainty in the
onset of decay. Values of m vs grid Reynolds number are
plotted in Fig. 3. We have included data corresponding
to the different grid designs, as well as data taken at
different operating temperatures. These data indicate
that the vorticity decays in a manner consistent with Eq.
(2) providing an attractive means of estimating /./g.
Namely, if a is the slope of the straight line fit to the data
plotted as described above then /./g is
/ 1/2
= =gl [l (s)

o ¢ 3|2

Over the range of Reynolds numbers investigated at
1.647 K, [l./eg~0.127 £0.023 cm. Using /[, =1 cm, we
obtain g=7.

Once one has the vorticity, the average energy dissipa-
tion per unit mass comes from

e=vw? 6)

(Ref. [3], Sec. 39). The Kolmogorov microscale is given
by

=03 =W . @)

Thus, we may extract from w(z) the time dependence for
the eddies at the dissipation end of the cascade, as plotted
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FIG. 3. Decay exponent m as a function of grid Reynolds
number. The dashed line shows the simple result from Eq. (3).
The diamonds and triangles were taken with the grid design
shown in Fig. 1(b) at T=1.52 and 1.647 K. Circles correspond
to another, rectangular grid design described in Ref. [12] at
1.647 K. The average of all data shown is {m)=1.5+0.2.

2585



VOLUME 71, NUMBER 16

PHYSICAL REVIEW LETTERS

18 OCTOBER 1993

Time (sec)

FIG. 4. Kolmogorov length n as a function of time during
decay.

in Fig. 4. The Kolmogorov length grows as a function of
time because the smallest eddies are continuously dissi-
pated by viscosity. In the interval 1 to 3 sec, our observa-
tions of @ imply that n~z34.

We conclude by showing in Table I the wide range of
quantities which may be deduced from our simple experi-
ment. Scaling suggests that if Au=|u(x+1)—u(x)|, !
being the separation distance, then e=(Au)3/I on scales
[,>1>n. When [ becomes of order /,, (Au)3~u'3 and
we recover (2). When [/~n then Au~v. Our results
give o, € 1, 7, v, and g (the kinetic energy density) on
the microscale. We then calculate u'=(l/n)"?v and
hence g and 7 on the scale /. .

In summary, we have used the quantized vortices of
helium II as a quantitative visualization device for tur-
bulent eddies. It is perhaps not too surprising that the
turbulent behavior of helium II seems to be classical:
Well above the critical velocity for the onset of flow with
dissipation there is a proliferation of quantum vortices
which couple the normal and superfluid components, so
that the entire flow is dominated by inertia. We believe
that our experiment indicates the potential usefulness of
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helium II for future studies of high Reynolds number tur-
bulence.
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