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Measurements of the Probability Distribution of the
Operationally Defined Quantum Phase Difference
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From a series of phase di8'erence measurements by our scheme 2, in which the field at one inter-
ferometer input is phase shifted progressively in steps of 18', we obtain the probability distribution
of the phase difFerence. The results are in agreement with theoretical predictions based on our
operational approach to the quantum phase.

PACS numbers: 42,50.1A'm, 03.65.Bz

The well known problem of identifying dynamical vari-
able(s) to represent the phase of a quantized electromag-
netic field [1—4] has experienced a revival of interest in
recent years [5—21]. Moreover, partly as the result of the
work of Agarwal, Paul, Schleich, Vogel, and co-workers
[21—25], attention is now focused not only on the opera-
tors and their expectations, but also on the entire prob-
ability distribution of the phase and on the quasiproba-
bility functions that represent the density distribution of
the state in phase space.

We have recently introduced an operational approach
to the problem of identifying the quantum phase which
is rooted in what is typically measured in classical op-
tics rather than in fundamental theoretical considerations
[26—29]. This approach leads naturally to the adoption
of different operators for different measurement schemes,
which is contrary to the point of view adopted in most
other treatments. However, our approach to the phase
problem has led to very good agreement with experiment,
indeed to better agreement over a wider range of param-
eters than other theoretical treatments.

We focus on the measurement of the phase difference
between two input fields, which we regard as more fun-
damental than the absolute phase, for reasons that were
already pointed out a long time ago by Nieto [30]. But
whereas the absolute phase is usually defined relative to
a strong local oscillator, in weak fields the difference be-
tween the photon numbers counted in one measurement
may be very small. For example, with one input to the
measurement apparatus in the vacuum state and one in-

put in a weak coherent state ~v) with ~v~ (( 1, most
measurements will result in zero photon counts and only
infrequently is even one photon registered. Because the
experimental outcome in which no photons are registered
leaves the phase undefined, we have chosen to discard
these outcomes and to renormalize the remaining prob-
abilities accordingly. On the other hand, a one-photon
outcome corresponds to one particular phase angle and
to a 6-function probability density in our formalism, and
this has been criticized [31,32]. In the following we show
that, by a simple modification of our previously described
measurement technique, it is possible to derive the entire
(almost continuous) probability density of the phase dif-

ference. We also present new experimental results that
confirm the theory.

Consider the 8-port experimental arrangement shown
in Fig. 2 of Ref. [28], which has been designated measure-
ment scheme 2 26—29]. Incoming optical fields enter at
input ports 1 and 2, where they are split into two. Two
parts from ports 1 and 2 come together and interfere at
beam splitter BS3, while the other two parts interfere
at beam splitter BSs, after one beam traverses a A/4
phase shifter. We can therefore simultaneously obtain
the measured cosine CM of the phase difFerence P2 —Pi
from the photon counts registered by detector D3, D4
and the measured sine SM of the phase difference from
the photon counts registered by Ds, Ds, by use of the
relations

n4 n3

[(n4 —ns) 2 + (ns —ns) 2] i/~ '

~M 2 1
n6 —n5(~"-~ ) =

[(;, ;,) +(;, ;,).]./' (2)

Because n4 —n3 and n6 —n5 commute, there is no am-

biguity in writing fractions as in Eqs. (1) and (2). Now
the expectation of any operator function f((n)) of the
set (n) of number operators is given by

(n4 —ns) + i(ns —n5)

[(n4 —ns) + (ns —ns) ]i/2

= [&M(&4) + iSM(&4)]*
iO(fn))2:

(f(( ))) = ).&((n))P(( ))
fn)

where P((n)) is the joint probability of (n). P((n)) may
be expressed in terms of the input field operators a~, a2
as a normally ordered expectation [26]. We discard ex-
perimental results in which n4 = ns and ns = ns because
they do not lead to meaningful values of CM, SM, and
this requires a renormalization by the factor (1 —Po) giv-
ing the probability of not encountering 0/0 in Eqs. (1) or
(2). We assume henceforth that this has been done. In
particular, if we choose f((n))
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in Eq. (3), (AP—:Pq —Pq), then (f((A))) becomes the
characteristic function C(x) of the phase difference AP

of the same width B. Let the bins be labeled by
N = 0, +1,+2, . . . , +vr/B. Then the probability P~ of
encountering the phase difference AP in bin N is given

by

and Fourier inversion yields the probability density of
+~jQ (~+ 1)gg).

(X—~1)a
p(AP

I
rB) d(AP) . (9)

(6)

Now suppose that input field 2 to the apparatus in Fig.
2 of Ref. [28] is phase shifted by an angle e before it enters
at port 2. Then the measured characteristic function
becomes C(x; e) = (exp[iOx])', where ( )' denotes the
expectation in the phase shifted quantum state. The
corresponding probability density of AP, conditioned on
the phase shift 8, is given by

(7)

If we make repeated measurements for several diferent
values of the phase shift 0 in equal steps B, so that 8 =
rB, where r = 0, +1,+2, . . . , +~/B, and if we choose B
so that 7r/B is an even integer, the desired operational
probability density of the phase difference P(AP) can be
obtained by averaging the values of p(AP

I
rB) over r.

Thus

As B gets smaller and smaller P~ tends toward the con-
tinuous probability distribution P(AP). One advantage
of working with the discrete histogram P~ rather than
with P(AP) is that 6-function singularities of P(AP) are
removed in the integration, This is illustrated by the
following examples.

The so-called "split photon" input state, which was
treated in Refs. [26,28], is a limiting case of the two-
mode coherent product state lvq)qlvq)2 when lvql, lvql ((
1. Then

v~)~lv2)2 = lvac)~, ~+»11)~lvac)2
+»lv«) & I1)2 + O(lvl ), (10)

and because the vacuum or all-zero photon contribution
is automatically discarded in our measurements, the re-
sults for this state are just like those for the one-photon
superposition state

I@) = Pil1)il0)2+ P2I0)il1)2,

The measured characteristic function C(x; 8) is easily
evaluated in the state ]4') and, after Fourier inversion and

Under these circumstances if, is natural to present the on putting 6' = rB and t) = arg p2 —arg p&, we obtain
results of the measurements as a histogram with bins for the average or operational probability density P(AP)

from Eq. (8),
+~/a

P(&p) =
2 ) —([1—2 pyp2I cos(tl + rB)]6(AQ+ rB —vr) + [1+2]pqp2] cos(rl+ rB)]6(AQ+ rB —2vr)

+[1 —2]PqPsl sin(g+ rB)]6(6$+rB —3vr/2)

+[1+2[PgP2] sin(t)+ rB)]6(AQ+ rB —vr/2)) . (12)

1
P~ ——

2 1+2 i 2 cos g —NB (13)

B B

This includes the efFect of renormalization by the factor
(1 —'Pp). The presence of 6 functions simply reflects the
fact that each photocount outcome corresponds to one
particular value of the phase difference. From Eq. (9) the
probability P~ that a given phase difference falls into bin
N is given by

and this has no singularities. In particular, when P2 = 0,
so that the input at port 2 is the vacuum state, Eq. (13)
yields a uniform probability distribution of the phase dif-
ference, as would be expected for a Fock state. The singu-
larities that appear before binning, which were discussed
previously [28], evidently disappear.

More generally, for an arbitrary two-mode coherent
product state lvq)qlvq)2 we obtain for P((n)) [Eq. (76)
of Ref. [26]]:

P((&j) = lvj —'U2I Ivy + 'U2]
I

—ivy + 'U2I
I

—vy + zvgl (( (i (~ (z)V1 + V2

4" n3'. 4 n4'. 4"5n5! 4"6n6~ (14)

With the help of the foregoing procedure this gives p(AP I

0 = rB) and hence P~. In the limit B —+ 0 the continuous
probability distribution P(AP) can be obtained directly by writing, with P = 2]vqllv2]/(lvql + Iv2] ),
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1
P(AP) = p(AP I e) dg

( 1 ) (Iv I2 + Iv2I2) 3+ + 5+~6 e—(I il +I il )
2

(n}
[1 —P cos(rl + 0 —AP)]"' [1 + P cos(rl + 0 —AP)]"'

X
4 n, ! 4"4n4I

[1 —psin(rl+ 0 —Ap)]"' [1+psin(rj+ 0 —Ap)]"'
X

4nsn51 4n6n6t

and this continuous probability distribution is plotted in
Fig. 1 for vi = 1, v2 = 2.36. O((n)) is the function of
(n) defined by Eq. (4).

It is interesting to compare the form of P(AP) given
by our theory with that given by another theory for the
phase, such as that of Pegg and Barnett [10], for example.
If Ci)ilc2)2 is the two-mode product phase state, with
the phase state IC) defined within the truncated Hilbert

(16)

and with the understanding that we allow s ~ oo at the
end, we have for the probability density ppa(AP) of the
phase difFerence AP given by Pegg and Barnett,

s+ I)'
ppH(&4) =

2ir I
i(C'il2(C'i + &O'I») 2I») il' &C'i (17)

Expansion of the coherent states and the phase states in terms of Fock states leads to the following result:

[I+ e
—(ivil'+I»I')] )27r

fn)

lvil"'+"' lv2I"'+"'
cos[(ni —n', ) (AP —rI)], ',(»'n2'nz'n2')

(18)

~1P1, 2 g~g
n1 +n g =n1+n~

This probability density is also shown in Fig. 1 for the
case v~ ——1, v2 ——2.36 for comparison with our theory.
The curves clearly differ signifi. cantly. Because our the-
ory for measurement scheme 2 incorporates the effects of
the 50%%uo .'50Fo beam splitters BSi and BS2, whereas the
Pegg and Barnett theory does not, we also show in Fig. 1
the results given by Eq. (18) when the field amplitudes

are rescaled so that lvil = 0.5, lv2I = 2.36 /2 = 2.78.
The agreement with our theory is no better in this case
than before. We therefore conclude that our phase mea-
surement scheme is not well described by the Pegg and
Barnett formalism.

We have tested these theoretical predictions experi-
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FIG. 1. Predicted probability distribution P(DP) of the
phase difFerence AP between two input fields in the coherent
state lvi) lv2) with vi = 1, v2 = 2.36. The full curve is based
on Eq. (15) for our (NFM) theory. The two broken curves
are based on Eq. (18) for the Pegg and Barnett theory, with
and without reseal. ing.

FIG. 2. The measured probability distribution P(AP) as a
function of the phase difference AP for the two-mode coherent
state lvi)lv2) with vi = 1, v2 = 2.36 and bin size B = 18'.
The two horizontal lines at the top of each bin correspond to
the mean +1 standard deviation. The black dots show the
theoretically expected values given by our (NFM) theory.
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FIG. 3. The measured probability distribution P(AP) as
a function of the phase difference AP for the "split photon"
state I4) given by Eq. (11) with Pq/P2 = 1.07 and with bin
size B = 18 . The two horizontal lines at the top of each bin
correspond to the mean +1 standard deviation. The black
dots show the theoretically expected values given by Eq. (13)
for our (NFM) theory.

mentally with the apparatus shown in Fig. 2 of Ref. [28]
and described in more detail in Refs. [27,28]. The in-

put light beams were derived by splitting a very stable
single-mode He:Ne laser beam into two beams, as before
[27—29]. The differential phase shift 8 = rB at the inter-
ferometer input was generated by piezoelectric displace-
ment of the input beam splitter in phase steps of B = 18 .
The photon numbers registered by the four equally sensi-
tive detectors D3, D4, D5, D6, in a measurement interval
of 200 ns, were recorded many thousand times.

Figure 2 shows the histogram of values resulting from
measurements of the two-mode coherent input state
~vy)]vq) with vq = 1, vq = 2.36. Also shown superim-
posed are the theoretically expected values derived from
our theory by use of Eq. (14). Figure 3 gives the cor-
responding experimental results for the "split photon"
state pa~1)q~0)2+ p2~0)q~l)2 with p2/pq = 1.07, together
with theoretical values given by Eq. (13).

In both cases there is reasonable agreement between
our theory and experiment. We suspect that the some-
what worse agreement in Fig. 3 is connected with slow
drifts of the imposed phase shifts 0, because the signiG. —

cantly lower counting rates in Fig. 3 required a 12 times
longer total measurement time. It is worth noting that
the discarded measurement outcomes amount to no more
than 2.5% of the total in Fig. 2, but to 98% of the total
in Fig. 3.

It is apparent that our experimental procedure is not
limited to giving the average sine or cosine of the phase
difference AP, but that it allows the probability distri-
bution of AP to be obtained from the data. Moreover,
the experimental results agree quite well with our oper-
ational theory of the phase. Finally, these experiments
obviously do not test those theoretical approaches to the
phase that give the probability distribution directly but

require the use of a strong local oscillator at one interfer-
ometer input [21—25].
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