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Angular Momentum Surface Density of the Kerr Metric
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A method for interpreting discontinuities of the twist potential of vacuum stationary axisymmetric
solutions of Einstein's equations is introduced. Surface densities for the angular momentum of the
source can be constructed after solving a linear partial difFerential equation with boundary conditions
at infinity. This formalism is applied to the Kerr metric, obtaining a regularized version of the density
calculated with other formalisms. The main result is that the integral defining the total angular
momentum is finite for the Kerr metric.
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The physical interpretation of solutions of the Einstein
equations is a task of great importance in general rela-
tivity. In the last few decades a great effort has been
made to generate new solutions, but only a few have been
studied from the physical point of view. In this Letter
we provide a new method for constructing the angular
momentum density of a source of a vacuum stationary
axisymmetric solution of Einstein equations from the dis-
continuities of its twist potential. This is a generalization
to curved spacetime of the potential theory formula for
constructing dipole densities for a Newtonian field. As an
example, the developed formalism is applied to the Kerr
metric and the results are compared with those obtained
by Israel in [1]. A brief discussion is provided.

We shall follow the formalism developed in [2,3] for sta-
tionary axisyrnmetric perfect fluids and consider vacuum
as a rigidly rotating perfect fluid whose four-velocity one-
form u is just the timelike leg of an orthonormal space-

time vierbein. In canonical coordinates (t, P, p, z), the
metric is written

ds = —e (dt+ Ad/)
+e—2U

[
2k (dp2 + dz2) + p2 dg2]

and so we choose u = e+(dt + Ad/) and define a form

(to = *u, where cu is the vorticity form associated
to u and * denotes the two-dimensional Hodge dual in
the space orthogonal to the orbits of the Killing vectors

(cd, Oy)) from

du = ahu+mh6I (2)

where 6W is a one-form orthonorrnal to u in the space
spanned by the orbits of the group of isometrics, and a
is the acceleration form. We shall only consider metrics
which are asymptotically flat. For our purposes we just

!
need the following behavior at inanity in some coordi-
nates (t, r, 8, P):

ds = —
! 1 —

! dt+ dP! + 1+ ! [dr + r (d8 + sin 8dg )]+0(1/r ),( 2m / 2J sin28 2mb

) 'r ) (3)

where m is the total mass of the source and J is the
total angular momentum. Prom the Bianchi and Einstein
vacuum equations, it follows [2,3] that to and *to have to
fulfill

dto + (b —2a) A to = 0,
d + tU + 2G R, +tU = 0, (5)

where 6 = d(ln p). These two equations can be formally
integrated:

ric function in (1). Einstein's equations for axisymmetric
stationary vacuum metrics can be reduced to a complex
second order partial difFerential equation for the Ernst
potential [4], s = e + iy Our req. uirernent about the
asymptotic form of the metric imposes the following con-
dition on y:

g = —2J cos 8/r + O(1/r ) .
—1 2UdA (6)

(7)
We shall integrate over the whole space V3 orthogonal

*u = e '~dy, to the velocity u (whose metric is g = g+uu) the pro-
jection of the gradient of a function z (to be determined

where y is the so-called twist potential and A the met- later) over the difFerence e [*(io) —*io], which will be
obviously zero:

~ge ([*(to) —*to],dz)= ~~gB z(p e e" 0&A —e g" 8&g)
= B„([trav]AB z —~age . g" yc) z) + yB~(~age g" c) z), (9)

where e'" = e2i+ "1[pv] is the Levi-Civita tensor on the space orthogonal to the orbits of the Killing vectors and (, )
is the scalar product associated to the metric. We choose z so that it satisfies
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0„(~ge g" O, z) = 0 (10)

0= ~ge ([*(u) —*m], dz)d2: dz dx

n„O z(p e s" A —e g" y)dS . (11)
V,+uBV,

The boundary of Va+ consists of S and the sphere at in-

finity and the boundary of V3 is just S. According to our
assumptions about asymptotic behavior and continuity,
the integral at infinity can be computed to yield

dS[y]e s g" n„O„z = —87rJ, (12)

where we denote by [y] the jump of the twist potential
across S and by n the outward unit normal to S. From
this formula we can interpret s[y]e —g" n„B z as
the angular momentum density of the two-dimensional
source of the vacuum metric.

with the boundary condition z = r cos0 at infinity. W'e
assume now that the metric is continuous and that the
twist potential is discontinuous across a closed surface
S. This is no restriction since we can always close the
surface taking the zero value for the discontinuity in the
rest of it. The 3-space V3 is thus divided in two regions

Vs (interior) and Vz+ (exterior) and we can apply Stokes'
theorem to our integral:

Z = rcos8. (14)

The surface r = 0 is then a disk of radius P = a sin 8 and
therefore the points with polar angle 8 and ~ —8 match
on the disk. Hence, in what follows we shall restrict
the range of 8 to [O, vr/2) on the disk r = 0 to avoid
double counting these points. The whole metric has the
following expression:

Now we can apply this result to an example: The met-
ric discovered by Kerr [5] is of great interest in astro-
physics as the exterior of a rotating black hole. In 1970,
Israel [1] used the theory of surface layers [6] to obtain
the energy-momentum tensor of a minimal source for the
Kerr metric that consisted of a disk. The mass and angu-
lar momentum densities obtained with this method are
not integrable and therefore the singularity ring encir-
cling the disk had to be considered. This was done by
Lopez applying the theory of distributions [7]. In what
follows we shall calculate the angular momentum of the
source taking into account the discontinuities of the twist
potential.

The Ernst potential for the Kerr metric is z = 1—
2m/(r —iacos8) and so the twist potential is just y =
—2macos8/(r~+a cos 8). This function takes the value

y(r = 0) = —2m'/(acos8), 8 E [0, vr/2), e = +1, on
approaching the disk r = 0 from above or from below,
respectively. This can be easily seen [1] considering pseu-
docylindrical coordinates:

P = (r +a )' sin8, (13)

2mar sin 8
ds = — 1— dt++a cos 8) g r + a cos 8

( 2mr ( dr'
+I 1 —

2 z z ~
(r —2mr+ a ) sin 8dg + (r —2mr+as cosz8)i +d8r2 + az cosz 8) (rz —2mr + az )

(15)

ds = a (cos 8d8 +sin 8dg ) . (17)

Inserting these expressions in (12) we get the following
expression for the angular momentum of the source:

7t./2
d0 a sin 0 cos t9 o g,

2vra cos 8

where m is the total mass and ma, the total angular
momentum. It fulfills the required asymptotic conditions
for the previously described formalism to be applied. A
solution for (10) with the prescribed boundary condition
at infinity is

2a m(5cos 8 —3cos8)
z = r —3m cos8+

5(r2 + az cos2 8)

The disk r = 0 has n =, ,&B„as a unit normal vector
and the metric on this surface is

The integral defining J is perfectly regular and takes the
value ma, which is consistent with the asymptotic ex-
pression of the metric.

The Ernst potential for the Kerr metric is a solution of
the flat spacetime Laplace equation in oblate spheroidal
coordinates [1]. Therefore its imaginary part can be
viewed as a Newtonian potential and we can study its
dipole density using potential theory [8]. As the disk of
discontinuity is flat, the expressions obtained for J and
o.J in flat spacetime coincide with those obtained previ-
ously for the Kerr metric. Moreover, if we consider the
classical potential that has ~g as a dipole source, it hap-
pens to be the same as the twist potential. That is, the
twist potential for the Kerr metric, when considered as a
Newtonian potential is completely generated by a dipole
layer. No higher multipole layers need to be considered.

We can also compare the density o.J with the one ob-
tained in [1]. In that reference, the calculated angular
momentum density is o = —m sin 8/4vracoss 8. This
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density is negative and nonintegrable and so it has to be
compensated with an infinite angular momentum on the
singularity ring. On the contrary, the density derived in
this Letter is positive and integrable and so it could be
viewed as a regularized version of [1]. A similar situation
happens in magnetostatics, where the potential due to a
ring of uniform current can be obtained also from a con-
stant magnetic dipole density on the disk surrounded by
the ring.
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