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Must Time-Machine Construction Violate the Weak Energy Condition?
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We present a time-machine model in which closed timelike curves evolve, within a bounded region of
space, from a well-behaved spacelike initial slice S; this slice (and the entire spacetime) is asymptotically
flat and topologically trivial. In addition, this model satisfies the weak energy condition everywhere on .S
and up until and beyond the time slice (an achronal hypersurface) which displays the causality violation.
We discuss the relation of this model to theorems by Tipler and Hawking which place constraints on

time-machine solutions.
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In the last few years considerable attention has been
given to the problem of causality violation due to the for-
mation of closed timelike curves (CTCs). The main
question is whether general relativity allows one to pro-
duce CTCs in our Universe (or in an asymptotically flat
spacetime) if none exist a priori. Morris, Thorne, and
Yurtsever [1] raised this question five years ago, suggest-
ing an interesting model based on a traversable worm-
hole. Their model demonstrates the formation of CTCs
at some particular moment and location in spacetime.
Then, in 1991, Gott [2] suggested an even simpler model
of a time machine, based on two infinitely long rapidly
moving cosmic strings.

While these models are rather elegant, they both seem
to suffer from fundamental difficulties. The first model is
problematic because one needs a concentration of nega-
tive energy to maintain the wormhole (i.e., to prevent it
from collapsing to a singularity). This is a problem be-
cause we expect the energy-momentum tensor 7ag of any
realistic material to satisfy the weak energy condition
(WECQ), according to which T,su"uf =0 for every time-
like or null vector u® In other words, any physical ob-
server is expected to measure non-negative energy densi-
ty. All known forms of (classical) matter fields satisfy
the WEC. (Under certain conditions, quantum fields
may violate the WEC, but there are strong constraints on
such a violation [3,4].) In addition, the formation of a
wormbhole involves a change of topology, which is by itself
problematic [5,6]. In Gott’s two-string model, the energy
density is always non-negative and the topology is trivial;
however, this model is not asymptotically flat, as the
strings are infinitely long. Moreover, it turns out that in
this model CTCs are running toward the ‘“‘center” from
infinity [7,8]—a situation which has little to do with the
creation of a time machine by a human being.

One might hope to get rid of the above difficulties by
improving the model. But Tipler [9,10] has proved a
number of theorems which put strong constraints on such
a possibility. In rough terms, these theorems state the
following: If there exists an asymptotically flat partial
Cauchy surface S, and a formation of CTCs occurs in
some bounded spatial region to the future of S, and if the
energy density is nowhere negative, then the spacetime
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must be singular (i.e., geodesically incomplete). In other
words, if we want the solution to be nonsingular and to
describe the formation of a time machine within some
finite region of space from “normal’ initial data, then the
WEC must be violated. This relation between the forma-
tion of CTCs and the violation of the WEC has been re-
cently strengthened by Hawking [6]. Hawking’s analysis
assumes a compactly generated time machine, i.e., a situ-
ation in which all the past-directed null generators of the
Cauchy horizon enter some compact region C and stay
there forever. Hawking then proved that if a compactly
generated causality violation occurs to the future of a
noncompact partial Cauchy surface, then the WEC must
be violated somewhere. He further showed that in such a
situation there exists an instability of quantum matter
fields.

In this paper we shall ignore questions of stability, and
focus attention on the relation between causality violation
and the WEC. Thus, we shall assume that a realistic
solution should satisfy the WEC, and ask the following
question: Do the presently known constraints on causali-
ty violation completely rule out the possibility of con-
structing a time machine from materials which satisfy the
WEC? We shall provide a solution which suggests that
— at least to some extent— the answer is no.

The standard interpretation of Tipler’s theorems is to
say that the appearance of a singularity in a given model
indicates that this model is unrealistic and cannot be
physically realized: Even for future-generation engineers
it will probably be impossible to use “singular matter” for
the construction of their time machine [10]. However,
the theory of black holes provides an obvious counterex-
ample to this interpretation. For, by applying this inter-
pretation to the black hole’s singularity theorems one
could conclude that black holes can never form. This
analogy makes it clear that Tipler’s theorems can bear a
very different interpretation, namely, that the construc-
tion of a time machine is perhaps possible, but that the
causality violation will then inevitably lead to the forma-
tion of a singularity. This possible interpretation suggests
that one should discard a time-machine model due to a
singularity only if this singularity appears sufficiently ear-
ly that it can causally interfere with the occurrence of
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causality violation. In other words, we shall not worry
too much about late singularities if a causality violation
occurs already in D ¥ (S) [of course, D" (S) itself cannot
include any closed causal curvel. Hereafter we are using
the notation of Ref. [11].

A similar criterion should be applied to regions where
the WEC is violated. Although we presume here that a
realistic solution must satisfy the WEC, for mathematical
convenience it will sometimes be useful to consider a solu-
tion in which the WEC is initially satisfied but is violated
later. By assumption, the late parts of the spacetime
(those parts which violate the WEC) are of no physical
relevance, but the early parts could still be relevant.
Consider a solution g in which the WEC is satisfied
everywhere except in some region V (we assume VNS
=d®). Assume that there exists some configuration of
matter fields which yields an energy-momentum tensor
that agrees with g everywhere except in V. Suppose that
one arranges the initial data (for both gravitational and
matter fields) on S accordingly. Then, at least initially,
the evolving geometry will agree with g. At later stages,
the evolving geometry will deviate from g—not only in V,
but generally in the whole range J (V). Nevertheless
(assuming that the matter fields possess a well-posed ini-
tial value problem), by causality the evolving geometry
must agree with g in the range P=D Y (S) —J (V). The
whole region P (and, by continuity, P, too) is thus physi-
cally meaningful. Note that the definition of P takes care
of causal effects of both singularities and violations of the
WEC. We may thus accept a time-machine solution,
even if some part of it violates the WEC or is singular, if
the causality violation occurs already in P (that is, if P
includes closed causal curves).

We shall now give a solution in which a causality viola-
tion occurs in P, within some bounded region of space, to
the future of a partial Cauchy surface .S which is asymp-
totically flat and topologically trivial. The solution de-
pends on six parameters: a>0,b>0,r0>0,0<d <ry,
k>0, and g. Our starting point is the Minkowski line
element, which we express in polar coordinates

napa'x“dxﬁ=—d12+dr2+dzz+r2d<p2, (¢))

(Later we shall also use spherical coordinates —dt?
+dR?+R%d0?* for Minkowski.) We define p2=(r
—ro)2+z2 Any surface 0 <p=const<rp is a torus.
We shall now modify the geometry within the torus p=d
by writing

dS?=n.pdxdxP+ds?, )
where
ds*=2rh{atdt —b[(r —ro)dr+zdz1}de
+r2h2lb%p*—a’1lde?, (3)
and where
h=h()=[1—(p/d)*]? @
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for p <d and h=0 otherwise. Thus, outside the torus
p=d the Minkowski geometry is untouched. In particu-

lar, the region R > d +r¢ remains Minkowski. Finally,
we define the physical metric ds? by

ds*=F(1)dS?, (5)
where

FO=1+qG—1/a)—k(t—1/a)?. (6)

Outside p =d the geometry is conformally flat, describing
a homogeneous and isotropic cosmology. Thus, as it
stands, the metric is not asymptotically flat. However,
because the geometry is spherically symmetric for R > p
+d, it is relatively simple to introduce a cutoff at some
Ro>p+d and to match the solution to Schwarzschild
(either sharply or smoothly) at R > R¢— without violat-
ing the WEC. This will be shown in Ref. [12].

The main features of the above solution are represented
in Fig. 1. Qualitatively, the way the CTCs form is simi-
lar to the axially symmetric time-machine solution de-
scribed in Sec. II of Ref. [6]. The circular orbits (name-
ly, the orbits ¢ =const, r =const, z =const), which are al-
ways closed, are initially spacelike everywhere. The
effect of the term atdt in Eq. (3) is to tip the light cone in
the —¢ direction. At the critical moment t=1/a, the
effect is so strong that the circular orbit p =0 becomes
null (go,=0). It is easy to show that this closed null or-
bit is a (future-incomplete) null geodesic, and we denote
this closed null geodesic by V. At t> 1/a, the circular
orbits in the central parts of the torus p=d are time-
like—i.e., CTCs. Because of the finite support of A, the
region of circular CTCs is limited to the interior of p =d.
The parameters ro and d control the dimensions of this
torus. The main qualitative difference between our solu-
tion and the one in Ref. [6] is that in the latter the WEC
is violated along the closed null geodesic. Here, thanks to
the parameter b (which expresses a focusing of the gen-
erators towards N) the WEC is satisfied at N for ap-
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FIG. 1. A spacetime diagram showing a cut (¢ =const,z =0)
through the time-machine spacetime. The region shown is the
central part of the torus p=d, which forms the “core” of the
time machine. The heavily dotted region 7 is the causality-
violating set. The dot N (which is in fact a ring) is a closed null
geodesic. In the lightly dotted region A all surfaces t =const
are spacelike. The WEC is satisfied in the whole region extend-
ing from the initial slice S to the hypersurface 1 =1¢".
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propriate choice of parameters. The conformal factor F
has been introduced in order to prevent a violation of the
WEC away from /V.

We shall now look in more detail at some central
features of the time-machine solution, Egs. (1)-(6).
Hereafter, we shall only be interested in the vicinity of
t=1/a. First, det(g) =—F*? nowhere vanishes in p
<d. The metric and inverse metric components are well
defined and C* everywhere—except at p =d where they
are C2. Consequently, the curvature and Tos are well
defined and continuous everywhere.

The hypersurfaces ¢=const (properly extended
throughout the Schwarzschild region to spacelike infinity)
are topologically trivial and asymptotically flat. A
straightforward calculation yields g =F ~!'[(hat)?—1].
Since h < 1, g <0 for every 0 <t < 1/a. Therefore, any
hypersurface ¢ =const in this range is purely spacelike,
and can serve as a partial Cauchy surface. Let S be such
a hypersurface, with 0<r¢=¢;<1/a. The region
ts <t <1/a (denoted A in Fig. 1) is thus free of any
causality violation. However, at ¢t > 1/a a causality viola-
tion does occur. The metric component

oo =Frl1+h%(b%p?>—a’?],

which is always > 0 in A4, becomes negative at t > 1/a in
the vicinity of p=0. Therefore, for any ¢ > 1/a, the cir-
cular orbits in the vicinity of p =0 are CTCs. The circu-
lar orbits are strictly null on the hypersurface t =t,(p)
(see Fig. 1), where t,(p) is defined by

alt}=b2p?+ 11— (p/d)*] ~¢,

and they are timelike at ¢ > 1,(p). [For p<(d,b ") one
gets t,=1/a+(b%/2a)p®] One can easily show that,
first, the causality-violation region 7 extends beyond the
curve t,(p), and second, that the intersection of a hyper-
surface ¢ =const > 1/a (e.g., the hypersurface ¢' in Fig. 1)
with T is compact. That is, the causality violation occurs
within a finite region of space.

In Ref. [12] we use the limit ro— o= (in which the
geometry becomes cylindrically symmetric) to show the
existence of combinations of parameters for which the
WEC is satisfied at the critical moment r=1/a. Two
such examples are

a=6d”", b=2d7', k=100d "2, g=3d"' (1)
and

a=100d ~', b=10d 7',
(7
k =5000d ~2, g=—40d ',

provided that rg is sufficiently large. (It turns out that if
ro is too large, then trapped or antitrapped surfaces
necessarily exist in the solution. Whether it is possible to
avoid such trapped and antitrapped surfaces and yet to
satisfy the WEC is still an open question.) Then, by con-
tinuity, for sufficiently small 6> 0 the metric ds? [Egs.

(1)-(6)] with the parameters (7) or (7') satisfies the
WEC in the whole range l/a—6<t<l/a+65. We
choose the initial slice S and the slice ' > 1/a (see Fig. 1)
to be within that range.

In Ref. [6] Hawking has shown that a compactly gen-
erated Cauchy horizon (which evolves from noncompact
S) includes a closed null geodesic, and the WEC must be
violated somewhere along this geodesic. But in our solu-
tion the closed null geodesic N nowhere violates the
WEC. This shows that the geodesic /V is not exactly of
the type considered in Ref. [6]. And indeed, a close look
at our metric reveals that the generators of the Cauchy
horizon H focus onto N in the future direction, rather
than the past. In other words, NV is not the past “edge” of
H; rather, it is the future edge of some section of H (Fig.
1 is somewhat misleading in this respect, because in T the
hypersurfaces ¢ =const are not everywhere spacelike).
Yet, Fig. 1 makes it clear that a sequence of spacelike hy-
persurfaces (r =const < 1/a) can approach N from the
past without first intersecting H elsewhere.

It is likely (though not yet proved) that in our solution
H is compactly generated. We therefore [6] expect the
WEC to be violated somewhere. But this violation can
only occur at ¢ > ¢'. Since in the region ¢ < 1/a all hyper-
surfaces ¢t =const are spacelike, this region is causally iso-
lated from any event at > 1/a. This ensures that the
closed causal curve N belongs to P.

Is it possible to modify the above solution in such a
way as to completely avoid any singularity or violation of
the WEC? We first point out that such a possibility does
not seem to violate Tipler’s theorems. In these theorems
(as in most black hole’s singularity theorems) the notion
of singularity is defined by geodesic incompleteness. We
are used to interpreting this incompleteness as an indica-
tor for a physical curvature singularity. This interpreta-
tion is probably justified for black holes, but perhaps not
for causality violation. For causality violation is often as-
sociated with the formation of an incomplete closed null
geodesic [6]. This kind of incompleteness, known as im-
prisoned incompleteness, does not express any local irre-
gularity in the geometry, and should not be regarded as a
spacetime singularity [11]. The curve N in our solution is
such an incomplete closed null geodesic (though not ex-
actly of the type discussed in [6]). Thus, in Tipler’s
theorems the demands for geodesic incompleteness may
be well satisfied by /V, without any true spacetime singu-
larity.

A stronger constraint on solutions which everywhere
satisfy the WEC emerges from Hawking’s analysis [6],
which shows that such solutions cannot have a compactly
generated Cauchy horizon. This raises the question as to
what extent the criterion of compact generation is re-
quired by physical grounds. The main goal of this cri-
terion is to rule out solutions like Gott’s spacetime [2], in
which the violation of causality begins at infinity [7,8].
Intuitively, one would like to exclude such solutions be-
cause, by causality, in such a situation the formation of
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CTCs cannot be triggered by a human being. This
motivates us to introduce the notion of causal generation:
We say that a Cauchy horizon H is causally generated if
there exists a partial Cauchy surface S and a compact set
Q € S (the “factory” set) such that HCJ *(Q). It seems
that none of the present theorems preclude the creation of
a causally but not compactly generated time machine
without any singularity or violation of the WEC. A sim-
ple example of a causally but not compactly generated
Cauchy horizon is the inner horizon of a Reissner-
Nordstrom (or Kerr) black hole. It is trivial to show that
in our solution the Cauchy horizon is causally generated.
Intuitively, it seems that in Gott’s spacetime the Cauchy
horizon is not causally generated, but this is yet to be
proved.

One might claim that it will be impossible for a human
being to produce a Cauchy horizon if its generators are
coming from some noncompact region. But the Reiss-
ner-Nordstrom example shows that this is not the case.
For, at least in principle, one can manufacture a spherical
charged object and then let it collapse. The (noncom-
pactly generated) Cauchy horizon will then automatically
form. There is, however, another argument against non-
compact Cauchy horizons: If H is not compactly gen-
erated, then information from infinity could penetrate
into the solution, making the evolution of CTCs to the fu-
ture of H uncertain [6]. Nevertheless, this argument only
shows that there is an uncertainty about the resultant
geometry; it does not indicate that the formation of CTCs
is impossible.

Moreover, there are situations in which, despite the

-above mentioned uncertainty, there are good reasons to
expect that closed causal curves will indeed form. Con-
sider a singularity-free spacetime in which CTCs evolve,
from a noncompact initial slice S, to the future of a
causally but not compactly generated Cauchy horizon H
which itself includes an incomplete closed null geodesic.
A simple example of such a spacetime can be obtained
from the solution (1)-(6) by modifying the conformal
factor F such that t =¢' becomes a boundary at infinity
—e.g., by multiplying F by (r —¢') ~2. (In this case H is
no longer the past boundary of 7, but it still can be
shown that NCH.) Then, despite the ambiguity regard-
ing the evolution beyond H, a causality violation is una-
voidable: The evolution up to H is unambiguous, and H
itself includes a closed causal curve. Can such solutions
be constructed without any violation of the WEC? We
do not have a clear answer, but nevertheless it appears
that none of Tipler’s and Hawking’s theorems rule out
this possibility.

To summarize, we have constructed a solution in which
CTCs evolve from a reasonable initial slice S. In this
solution the WEC is satisfied up to the moment where
causality violation occurs. We then introduced the notion
of causally generated Cauchy horizons, and proposed
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that, under certain conditions, the demand for compact
generation should be relaxed if the Cauchy horizon is
causally generated. We gave examples which show that
(i) at least in principle, a human being has the ability to
trigger the formation of a causally but not compactly
generated Cauchy horizon, and (ii) although the future

_evolution beyond such a Cauchy horizon is in principle

ambiguous, under certain conditions the evolution of
closed causal curves (or even CTCs) is inevitable. It
seems that the theorems of Tipler and Hawking do not
rule out the existence of solutions of this kind which
everywhere satisfy the WEC. We thus arrive at the fol-
lowing conclusion: At present, one should not completely
rule out the possibility of constructing a time machine
from materials with positive energy densities.

Of course, interpreting the above statement as if a
time-machine construction may soon be in our hands
would be a serious mistake. First, we recall that our suc-
cess in overcoming the WEC problem is only partial; in
the metric (1)-(6), we do expect a violation of the WEC
somewhere at ¢ >t'. [However, in the modified version
described above, with the extra conformal factor (¢
—1') 72, it is perhaps possible to completely avoid such a
violation.] Second, there could be other problems which
may prevent any attempt to violate causality. For exam-
ple, it is not yet clear whether in our model one can avoid
trapped or antitrapped surfaces and still satisfy the WEC.
Perhaps the most serious problem is the instability of
time-machine spacetimes. In particular, the focusing of
future-directed null geodesics on N in our solution may
indicate a classical instability (in addition to the quantum
instability [6])—though this is yet to be verified. Yet,
the author’s point of view is that a better understanding
of the backreaction effects is required before one com-
pletely rules out time-machine solutions due to their ap-
parent instability.
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