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The presence of a natural boundary in the angle complex plane of the function conjugating an area
preserving map with a rotation is a signature of nonintegrability. Numerical results suggest that the
boundary arises from the condensation of singularities when a real nonresonant frequency is approached

by a sequence of complex resonant frequencies.

For the quadratic map of the complex plane F:z'

=\z +.z2 the function conjugating the linear part of F with F has ¢ cuts with end points on a spiral if
A=e2"Pl4=% with a>0. When p/q tends to a (quadratic) irrational number and a— O the points
coalesce on the boundary of a circle, whose image is the Siegel disk.

PACS numbers: 03.20.+i, 02.30.—f

Recent progress on the theory of Hamiltonian systems
[1] has not yet provided a general integrability criterion.
The analysis of complex time singularities has been pro-
posed [2] conjecturing that the movable singularities are
only poles for integrable systems, branch points with an
infinitely sheeted global Riemann surface [3] otherwise.
It is still questioned whether on the Riemann surface the
singularities are isolated or form a natural boundary [4].
In the algebraic case a rigorous connection with the
Arnold-Liouville integrability is proved: The complex
time poles are on the lattice defining the complex tori
which foliate the complex energy manifold [5,6].

For area preserving maps it was proposed to investigate
the singularities of the function which conjugates the
complexified system with its normal form. This approach
establishes a correspondence between the complex angle
and complex time singularities, valid for Hamiltonian
flows just as for Hamiltonian maps. For a real analytic
map near an elliptic fixed point it was proved [7] that the
action singularities are confined to a neighborhood of the
real and imaginary axis which they intersect in a set of
exponentially small measure; analyticity in a strip is
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proved for the angle.

Angle analyticity of the conjugation function for an in-
variant curve was investigated on models like the stan-
dard map and semistandard map with real frequencies
below the critical breakup value. The standard map is a
well known Hamiltonian model corresponding to a kicked
pendulum, defined by r'=r+¢€sinf, 8 =0+r' and can be
locally conjugated to a rotation when the frequency (rota-
tion number) Q satisfies a diophantine condition |gQ/
(27) —p| ~' < ylq| for all the integer p and g, or has a
nonvanishing imaginary part. A local change of coordi-
nates r=Q+e0(Q,0:¢), 0=0+¢cu(0,06;¢), where u,v
are analytic in a strip of the complex © plane, allows giv-
ing the map the integrable form Q'=Q, 6'=6+ Q. The
global analyticity structure of the conjugation functions
u,v is relevant because it is related to the time analyticity
of the interpolating flow: Indeed the iteration of the map
in the new coordinates ©, =609+ nQ allows being inter-
polated by ©(t) =60+ Q where ¢ is real or even com-
plex. As a consequence in the initial coordinates such in-
terpolation reads 6(¢t) =09+ Q+ eu(Q,00+1Q:¢), r(z)
=0+e0(0,00+1Q;¢), where @ and Oy depend on the
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initial conditions rg, 6y, and therefore the singularities in
t are simply related to the singularities in © of u,v.

The semistandard map is a simplified version of the
standard map, which consists in replacing the sin6 non-
linearity with e® namely r'=r+¢/(2i)e®®, 0'=0+"r"
These maps are close to each other when Im6 <0, as can
be checked by inspecting their orbits. The numerical ex-
ploration of the singularities in © of the conjugation
function u for the standard or semistandard map is possi-
ble using Padé approximants on the series in z =e’® and
z ~!. Extended accuracy arithmetic has to be used in or-
der to avoid noise poles due to round off [8,9]. For the
semistandard map with real nonresonant frequency the
conjugation function appeared to be analytic in a strip
whose image has fractal boundaries [10,11]. For the
standard map we found that for a complex frequency
with resonant real part w/27m=p/q the singularities pro-
vided by the Padé approximants are two families of ¢ half
lines parallel to the imaginary axis in any vertical strip of
width 2x; such singularity lines allow an analyticity hor-
izontal strip. When the imaginary part tends to zero and
real part of the frequency approaches a diophantine value
the vertical lines become dense, and their end points are a
natural boundary for the analyticity strip since no analyt-
ic continuation beyond this boundary is possible.

In this Letter we examine a simplified model, such as
the quadratic map, whose features are similar to the
semistandard map. As a consequence if we choose €
small and Im@ large positive or negative the singularity
structure found for the standard map is almost the same
as for the quadratic map.

For the complex quadratic map we describe analytical-
ly the singularity structure of the conjugation function
and the rise of the natural boundary. We recall that

Z'=F(z)=rz+z2, 1)

with A =e™ and /27 diophantine, is conjugated with its
linear part ¢ =A¢ in a disk of the £ plane, whose image in
the z plane is called the Siegel disk. This is a connected
component of the Julia set &, given by the trajectory of
the critical point of F(z), where F'(z) =0 and F is locally
noninvertible [12]. The Julia set is the basin boundary of
oo; in the cases we consider, || <1, the Julia set & is
connected and the stability domain having & as boundary
is called the Fatou set F. Letting z =®(¢) =¢(+0(¢?) be
the conjugation function and {=¥(z) =z+0(z?) its in-
verse, the functional equations they satisfy read

Fod(g) =d(Az), YOoF(z)=A¥(z), ()

and hold for a complex frequency w+ia as well.
The circle map 8'=0+w+ ¢sin® when ImO <0 is well
approximated by the map

z'=e'”z exp(ze ~'?) 3)

by setting z=ee’®*®/2. The map (1) has the same
qualitative behavior as (3); close to the origin (|e| small
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enough) their orbits are indistinguishable and their criti-
cal points differ by a factor 2. When Im6>0 then the
circle map is well described by (3) with w— — o by set-
ting z =ee ~1(0*@)/2,

Choosing in Eq. (1) A=¢®7® with >0 a lower
bound to the convergence radius r; of ® is + [A|(1 —[A]),
while a better estimate for a— 0, when w/2x is diophan-

tine (quadratic irrational) letke —1| ~' < ylk]|, is given
by y '+a; for a good numerical algorithm see [13].
When w/2r is rational then y ~'=0 and r, vanishes as

a— 0 since the map is no longer linearizable.

When @ =0 and A is real @ is analytic in the cut §
plane as first suggested by a numerical investigation
based on Padé approximants [8]. If 0 <A <1 the func-
tion ¥ is given by

. F°r
¥(z)= lim )
n—o A"
and the Julia set & is a natural boundary of ¥(z). With
F°"or F° ™" we denote the composition of the function F
or its inverse F ! with itself n times. In order to deter-
mine the analytic structure of ®(¢) we observe that ¥
does not have a unique inverse in the interior of ¥.
The critical point of F and all its preimages are critical
points of ¥. Let us denote with z. = —A/2 the critical
point and with

20=zc, zk =Fy '(z.),...,

(5)
Zky, ..k =Fig '0 - oF T (z), ki=1,2,
its preimages
—% 4+ /2
Fle (Z)=__)‘_—_Lﬁ ) 6)

2

We observe that differentiating the second equation (2)
we have

Y (F(D)F'(2)=rv¥'(2), @)

which implies ¥'(z.) =0, since ¥(z) is analytic (¥’
bounded) at z=F(z.). Differentiating the equation
w(F°"(z)) =A"¥(z) and evaluating it for z=F°~""(w)
we have

vy'(w)klfll F'(F° ~k(w)) =A"9" (F° ~"(w)) 8)

and therefore ¥'(z) vanishes at the preimages zj,
the critical point.

The analytic structure of @ then emerges if we notice
that any of the 2” preimages zx,, ... &, is mapped into the
same point §, according to

kn of

,,,,,

Ce=w(z), si=v()=r"¢,...,
9)
Cn=V(zg, .. &)=2""C.

In fact replacing in (2) z=F ~'(w) we have
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Y(F ' w)) =1 ""w(w)
and consequently
V(F° ™ "(w)) =1 ""w(w).

At any of the points ¢, there is a square root type of
singularity. As a consequence ¥ is a one to one analytic
map of the Fatou set & not with the ¢ plane but with an
infinitely many sheeted Riemann surface obtained as fol-
lows: At the square root branch point ¢, we glue two
sheets; the point £ is a square root branch point in both
the previous sheets and in any of them two new sheets are
glued and so on ad infinitum.

The function ® has a cut joining {, with oo with new
branch points at A "¢, ... ,A ", .... Any one of these
sheets of the global Riemann surface is mapped by @ into
a domain delimited by arcs, which are the images by ® of
the segments [£,—1,&,] in all the corresponding Riemann
sheets. For instance [&.,£] belongs to two Riemann
sheets and is mapped into the segments l[z.,z,],[z.,z,],
while [£),&,] which belongs to four Riemann sheets is

mapped into the arcs with ends (zy,z11), (z2,z21),
Im z
(a) 150
-1.50 L Re z
-1.50 1.50
Im z
(b) 175 ]
-1.75 L Re z

-1.75 1.75

FIG. 1. Domains where the function ¥(z) is single valued for
the map z'=%z+z2 (a) and for the map z'= 5 e 2357+ 22

(b).

(z2,z12), (z1,z22) and so on. These arcs limit closed
domains, each of which has a limit point belonging to &.
For instance the cut { plane is mapped into a domain of
the z plane limited by the curves (union of a numerable
sequence of arcs) I'=lz,,z,]UGLz1)DVU G ,2z111), ...
and I'"=[z,,z,]U(z2,220) U (z21,2211), . . ..

In Fig. 1(a) we exhibit the Julia set with all the above
described arcs and the domains where ¥ is single valued.
Any of them is mapped into a sheet of the global
Riemann surface of ®. The figure reminds the tasselation
of the Poincaré disk with respect to a Fuchsian group.
This is not surprising since the dynamics is hyperbolic
and we achieve a uniformization process by introducing
these domains, which tasselate the Fatou set and are
mapped into each other by the action of F;~! and F; '
If A=¢'®@*i@ is complex the branch points of ®() are
on a spiral and we cut the ¢ plane along half lines drawn
by projecting them from the origin. The possibility of

-

—
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FIG. 2. Pictorial representation of the cuts for the map
2'=0.994¢2734/55; + 22 (a). Plot of the convergence radius
ri(a) versus In(1/a) for the quadratic map with frequencies
2rqj-1/qj+ia for 4<j=<10, where q1=1,g2=2, gj+1=g;-1
+gq; define the approximations to the golden mean. The hor-
izontal line corresponds to the exact value of the Siegel radius
rs (b)
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TABLE 1. Values corresponding to the maxima a=a; of
Fig. 2(b).

q; e ¥ In(1/a;) ria;)
S 0.96 3.2 0.277
8 0.98 39 0.2961

13 0.9915 4.76 0.3081

21 0.9965 5.65 0.3184

34 0.9985 6.50 0.3190

55 0.9995 7.60 0.3214

89 0.9998 8.51 0.3229

Fexact 0.326

joining all the branch points with a spiral will not be con-
sidered here. The structure of the Riemann surface and
the shape of the domains where ¥ is injective are simple
if /2n=p/q is a rational number, where we assume p
and g prime to each other. The number of cuts in this
case is finite and any of them there has a sequence of
branch points $x,lk+q, ... Ck+mg> ..., for k=0,...,q
—1. The Riemann surface of @ is built by suitably glu-
ing the sheets and the corresponding tasselation of the
Fatou set & into domains where ¥ is single valued is
shown by Fig. 1(b) for p=3, g=5. Each domain has ¢
distinct points on & since the first sheet (and all the oth-
ers) is divided into g sectors where oo can be separately
reached. The presence of g cuts and their location is fully
confirmed by the distribution of poles of Padé approxi-
mants [8,14].

In the case of a nonresonant frequency the number of
cuts is infinite and infinite is the number of points belong-
ing to & in any of the domains tasselating . Numerical
results show an ordered structure with rays of singulari-
ties corresponding to the rational approximations p;/q; of
the continued fraction expansion of w/2x. If we approxi-
mate w+ia with the sequence 27p;/q;+ia, keeping a
fixed, the limit as j— oo is better understood. The case
of a real diophantine frequency is subsequently obtained
by taking the limit a— 0: The branch points coalesce on
a circle, creating a natural boundary in all the sheets,
which become totally disconnected. A unique limit is ob-
tained by considering the sequence 2zp;/q; +ia; where a;
converges to O for j— oo.

The best choice a; is suggested by Table I and Fig.
2(b) where we have plotted the convergence radius
ri(a) =|¢.| of @ for the golden mean. Since r;(a) van-
ishes both for a— 0 and a— oo for any j, it has a max-
imum at some point @ =a;. The sequence a; monotoni-
cally decreases to zero and r;(a;) monotonically con-
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verges to the Siegel radius. The genesis of the Siegel
disk, pictorially described by Fig. 2(a), is clear: ® at step
Jj is analytic in the { plane cut along g; rays collapsing to
a circle when j— o0; 7 is no longer simply connected and
the domains tasselating #F become its simply connected
components. The first component containing the origin
becomes the Siegel disk, mapped into the disk |¢| < r, of
the first { plane; its boundary is the closure of the orbit of
the critical point in agreement with Herman’s theorem
[12]. The disks in the remaining Riemann sheets are
mapped into the simply connected components of #.

This construction shows how the natural boundary of ®
for the real frequency map emerges from the singularity
pattern of @ for the approximating sequence of maps
with complex frequencies.

The numerical results for the standard map show that
the singularity pattern in the complex angle plane is the
same and confirm the crucial role of resonances once the
“real” dynamics is approached from ‘“complex dynam-
ics.”
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