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We enumerate the number of minimum energy compact structures (MECS) for a two dimensional
heteropolymer model consisting of hydrophobic (H) and hydrophilic beads averaged over all possible se-
quences as a function of the total number of beads N and the number of H beads Ny. The analysis of
the average number of compact structures, which grows exponentially with N, gives no indication of log-
arithmic corrections to the free energy. For intermediate values of the ratio Ny/N, we estimate that the
average number of MECS— which has a minimum at NJ"/N =0.6 & 0.1—does not grow with N. Our
results suggest that the late stages of protein folding should be restricted to the sampling of MECS only.

PACS numbers: 87.10.+e, 61.41.+¢, 64.60.Cn

The argument that the random search of all available
conformations of even a moderately sized protein takes
too much time has been used to suggest that kinetic pro-
cesses must dictate the folding of globular proteins. The
estimate of folding times using this argument is incompa-
tible with biological folding time scales (approximately
seconds). The apparent conflict between biological fold-
ing times and the times estimated by random sampling of
conformation space is known as the Levinthal paradox
[1]. Levinthal’s arguments ignore correlations between
the various residues and further assume that all confor-
mations have equal weight. Thus the number of allowed
conformations of a protein with /V residues is estimated as
follows:

Cy(ideal) =z", (1)

where each residue can be found in any of the z states. If
the polypeptide chain is treated as a walk embedded in a
regular space lattice, z would be the lattice coordination
number.

If one accounts for the simplest of these correlations,
namely, excluded volume interactions between residues,
the number of conformations is drastically reduced. The
importance of self-avoidance in the context of protein
folding seems to have been first emphasized by Dill [2].
However, it is easy to ascertain that taking this simple
correlation alone does not rationalize the biological fold-
ing time scale for proteins. One can further assume that
proteins are tightly packed structures and that the initial
events in the folding process lead to the collapse of the
random coil into a set of compact structures. These con-
siderations lead to a further decrease in the number of
conformations [2], and therefore result in a much smaller
estimate of the folding time. Nevertheless, it still remains
astronomically large. To illustrate the above arguments
let us consider the folding of a protein of N residues. For
our purposes we will ignore side chains and view the pro-
tein simply as a polymer of N sites on a regular lattice.
The number of self-avoiding walks (SAWs) (mostly un-
folded structures) scales with N as [3]

Cy(unfolded) =aN7" 'z, )

where 7y is a universal exponent, z.g is an effective
nonuniversal coordination number, and a~0O(1) is a
nonuniversal amplitude. In d =3 and d =2, y=1.16 [4]
and exactly 55/32 [5], respectively. If the rate of confor-
mational sampling is assumed to be 10'* sec ~! then a
random search of all SAWs in a cubic lattice, where
Zer==4.684 [4], would take approximately 1033 sec for an
N =100 chain. The number of compact structures, on
the other hand, can be written in its most general form as

l6]

Cpn(compact) = bz VN7 3)
where Inz is proportional to the free energy that depends
on the temperature and the lattice, z; is a surface fugaci-
ty, d is the space dimension, y. measures possible loga-
rithmic corrections to the free energy, and b6~0(1) is a
nonuniversal amplitude. For the purpose of estimation,
we will use the mean field expression z=z/e [7], z; =1
and y.=1. Hence, if one restricts the random search to
the set of compact structures only, then the time needed
to find the native state becomes about 102° sec if the pro-
tein is again confined to a cubic lattice (i.e., z =6).

The N dependence of Cy given by Eqgs. (2) and (3) re-
sults in estimates for folding times that are incompatible
with biological time scales. Nevertheless, the arguments
set forth above suggest that under folding conditions in-
teractions in proteins must rapidly lead to a state of
higher compactness, and in all likelihood the process of
folding involves only a search among a subclass of com-
pact structures. Good candidates for this subclass of
structures are minimum energy compact structures
(MECS). It is well known that the attractive interactions
between certain residues in proteins result in well defined
folded structures. In this paper, we have estimated the
effect of the attractive energy between hydrophobic resi-
dues on Cy by undertaking a primarily numerical study
of the MECS in a two dimensional heteropolymer model
introduced by Lau and Dill [8]. It is shown that the
number of MECS is considerably less than the number of
dense compact structures. The relatively small number of
MECS indicates that the effective attractive interaction
between certain (hydrophobic) residues may direct the
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folding into a relatively small set of minimum energy
compact structures. The transition to the native state
(believed to be unique) takes place from these MECS. In
fact, the existence of these pockets in free energy surface
has already been demonstrated in both off and on lattice
simulations [9,10]. More recently, a direct observation of
such basins of attraction has been made in some lattice
models of proteins [11], thus lending credence to this no-
tion.

The heteropolymer model consists of self-avoiding
walks of NV sites on the square lattice. Sites in the SAW
can be either hydrophobic (H) or polar (P). The energy
of a given configuration is

E=—¢ 2 6|r,—rj|,a s 4)
i>j€EH
where r;, i =1,2,...,N, are the coordinates of the SAW

sites, €> 0, and a is the lattice spacing. The interactions
involving P sites are taken to be zero. Hence, minimum
energy structures correspond to those configurations with
the largest number of nearest neighbors involving H sites
only.

For this model, we have defined compact structures
(CS) as those conformations with the largest number of
nearest neighbors. The minimum energy condition, how-
ever, imposes an additional constraint in the space of CS.
We have quantified the effect of this condition by
enumerating and classifying the MECS according to the
number of sites NV, and the number of H sites Ny. We
have computed the set of self-avoiding CS [12] for
N = 30 using the Martin algorithm [13]. We have fixed
the direction of the first step of all structures in order to
eliminate the fourfold symmetry of the square lattice.
Our series of compact structures is in complete agree-
ment with that of Chan and Dill [14]. For fixed values of
N and Ny, we have generated all possible (#,) sequences.
Finally, for every sequence, we have computed the corre-
sponding energy for al/l CS, thus obtaining the MECS for
N <22 [15]. We have also performed identical computa-
tions for larger chains, with N =23-26, using a finite
number (about 10%) of randomly generated sequences.

We are interested in computing the number of MECS
averaged over all possible sequences, Cy,n,(MECS), as a
function of NV and Ny. However, it is not clear whether
the direct (or so-called annealed) average coincides with
the most probable value of the number of MECS. In
fact, there are few sequences for which the number of
MECS equals the total number of CS. One way around
this problem is to compute the so-called quenched av-
erage of the number of MECS, namely, Cwn,
=explln{Cy,n,(MECS)}]1. From the viewpoint of evolu-
tion one can argue that since useful mutations take place
on a long time scale random sequences can be treated as
being quenched. A three-dimensional plot of Cn v, as a
function of N and the number of P sites Np =N — Ny is
shown in Fig. 1. Clearly, @n, n, and Cyn,(MECS) are
equal to Cy(compact) for Ny =0, 1, and N. The most
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FIG. 1. The average number of minimum energy compact
structures @n,n,, on the square lattice is plotted as a function of
the number of monomers /N and the number of polar monomers
Np=N — Ny for N <22 (for Np > N, Ny have been set equal
to 0).

striking aspect of this figure is the dramatic decrease in
the average number of MECS observed for intermediate
values of Ny, the actual minimum being at NJ"". (Data
are available upon request.)

It has long been realized that due to the rather strong
corrections to the leading asymptotic behavior, including
some probable surface terms [6], series of compact struc-
tures are very difficult to analyze beyond leading or-
der. These corrections are evident in Fig. 2 where
Cn(compact) and CN'thnZMEC85 are plotted as a func-
tion of N. The steplike shape of Cy(compact) shows a
clear VN (o perimeter) periodicity in the size of each
dip. To get the overall trend of Cy(compact), we have
coarse grained the series over VN intervals, and the re-
sulting averages (Cy(compact)) s are shown as full cir-
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FIG. 2. The number of compact structures (a) Cn(compact)
and of (b) the average number of minimum energy compact
structures for N, Cp,npin are plotted as a function of N, and
are denoted by open symbols. The series (a) is coarse grained
over VN intervals, and the averages (Cy (compact)) 5 are indi-
cated as full circles. The dashed line represents the theoretical
estimate (z/e)™ with z=4. The dotted line corresponds to the
estimate (b) @ ymin=13.
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FIG. 3. (a) Differential approximant analysis of the average
number of compact structures (Cn(compact)) j on the square
lattice. Each symbol represents one candidate for 1/z and
ye.— 1. The vertical dotted line indicates the mean field value
1/z,=e/4=0.67957. The accumulation near 1/z. suggests
ye — 1=0; the rectangle encloses our best estimates. (b) Histo-
gram P(y. — 1) of all possible candidates for y. — 1. The dotted
line indicates y. — 1 =0.

cles in Fig. 2. For values of N for which the periodicity is
not well defined, direct interpolation between nearest or
next to nearest neighbors is performed. The reliability of
the mean field estimate z=z/e [7], with z=4 on the
square lattice, is confirmed by the dashed line in Fig. 2.
It is noteworthy that the appropriately averaged series of

Cn(compact) is surprisingly smooth, suggesting that
corrections to the leading exponential term in (3) may
vanish. We have investigated this possibility by applying
well established series-analysis techniques including
differential approximants [16] to (Cy(compact)) /5.
This has led to the conclusion that

7.=1.01£0.05 and z=1.475+0.01s. (5)

The differential approximant analysis of the series is
shown in Fig. 3. No surface term is apparent from our
analysis of the averaged series. Indeed, our results do not
show any significant deviation from the mean field values
z=4/e [17] and y=1 [see Fig. 3(b)], suggesting that the
compact phase of polymers may in fact be described by a
mean field theory.

The scaling of MECS appears to be dramatically
different from that of Cy(compact). If we assume that
the same periodicities observed in Cy(compact) are also
present in @y ypia, We can estimate €y ypin~12-14 (see
dotted line in Fig. 2); thus, €y, ngn approaches a constant
value independent of N [18]. The annealed average
Cn,nv,(MECS) behaves similarly, the only difference
seems to be that the asymptotic behavior is obtained for
larger values of N. In any case, our results clearly
demonstrate that the average number of MECS in model
proteins is far fewer than the corresponding number of
compact structures [19].

At this point, we summarize the total number of
relevant configurations found for a chain of V=100 resi-

| dues under all the aforementioned conditions [20]:
Dimension Lattice Ideal Unfolded Compact MECS
d=2 Square 1090 104 107 13
d=3 Simple cubic  107® 1097 1034 .

We expect the number of CS and MECS to depend only |
on the lattice structure, and therefore, for 4 =3 the num-
ber of MECS should also be a constant.

These numbers confirm Levinthal’s conclusion that no
random search, not even among compact structures, will
be able to fold a protein on the time scale of seconds.
However, a folding kinetic scheme that includes a very
fast collapse of the protein structure, plus a relatively fast
location of the low-lying states that would correspond to
one of the MECS [21], may well be enough to allow fold-
ing of a protein to occur on a biological time scale.
Indeed, in an earlier kinetic study [11] we have argued
that the time scale for reaching a favorable MECS
should scale as 7oN° where ¢{~2-3 corresponds to a
dynamical folding exponent, and 7¢ is a microscopic time
constant. Based on the rough estimates of Ref. [11], this
time extrapolates to milliseconds for a protein with
N =100 residues. Finally, we are led to conclude that the
rate limiting step for folding should correspond to the
transition between the minimum energy compact states

and the native state. It is interesting to note that, based
solely on our estimates for the size of the space of confor-
mations, the aforementioned three stage kinetic scheme
(unfolded — compact— MECS — native) arises as a
natural scenario for folding on a biologically accessible
time scale. This kinetic scheme is further supported by
recent simulations of lattice models of proteins, where ex-
plicit studies of the kinetics of approach to the native
state from a denatured state show that folding occurs in
three distinct stages [11].

From a physical point of view, there should be an op-
timum value, or range of values, of Ny/N for proteins to
adopt well defined three dimensional structures [2]. In
fact, if Ny/N <1, i.e., most of the residues are polar,
proteins would dissolve in water. On the other hand, if
Np/N 1 proteins would collapse and precipitate out of
solution. On an average, proteins have a ratio of hydro-
phobic residues (as defined in Ref. [22]) of Ny/N=0.54.

On very general grounds, we expect that in the limit
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N—> oo, @y ygin should occur at some well defined ratio
NE"/N. However, does NJ"/N approach unity as hy-
drophobic sites form the core of the protein and polar
sites distribute on the surface? Or is NJ"/N close to the
minimum possible ratio for which a compact ground state
is obtained, apparently about 0.5? From our very limited
data, it seems that the latter possibility is more likely as
N— oo, in agreement with the ratio of hydrophobic resi-
dues found in proteins [22]. Our data suggest a rough es-
timate for NJ"/N is 0.6 £0.1. The fewest number of
MECS are found when hydrophobic monomers are some-
what more prevalent than polar monomers.

From an evolutionary point of view, our results add
support to the hypothesis that proteins could have ori-
ginated from random sequences. Since roughly half of
the naturally occurring amino acids are hydrophobic [22],
it follows that on an average a random heteropeptide se-
quence should have a ratio of Ny/N==0.5. Our numeri-
cal results strongly suggest that this ratio is not only very
convenient to stabilize proteins in solution [2], but also it
is close to the apparent optimum ratio needed to achieve
the fewest number of MECS. Notice that here we do not
appeal to any stability argument and that our conclusions
follow from explicit computations of the MECS.

In summary, using very simple considerations, in par-
ticular, the chemical heterogeneity of the amino acid se-
quence and hydrophobiclike forces, we have shown that
the number of minimum energy compact structures is far
less than the number of compact structures. It appears
that in the intermediate stages of protein folding,
minimum energy compact structures should act as basins
of attraction for most pathways. Hence, as long as the
protein is able to reach the MECS on a millisecond time
scale the folding process can occur on a biological time
scale. Our calculations along with the kinetic scheme re-
ported earlier [11] provide a rationale for resolving the
Levinthal paradox.

We are grateful to Michael E. Fisher for a critical
reading of the manuscript and to Alexander M. Gutin for
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number of MECS. Financial support from NSF is ac-
knowledged.
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