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We investigate the dynamics of a model of electrically coupled pacemaking cardiac sino-atrial node
cells. Cell models are biophysically detailed, and include voltage-dependent membrane currents, pump-
exchanger currents, and time-varying internal ion concentration changes similar to those seen in real
sino-atrial node cells. It is found that at low, yet physiologically realistic coupling conductance values,
complex dynamics including chaos can arise. Occurrence of these complex dynamics in coupled pa-
cemaker cells may provide an explanation for the origin of certain cardiac arrhythmias.

PACS numbers: 87. l0.+e, 05.45.+b

The sino-atrial (SA) node, a thin sheet of tissue locat-
ed in the right atrium at the base of the superior vena
cava, is the natural pacemaker of the heart. When isolat-
ed, each node cell undergoes spontaneous oscillation, ex-
hibiting a distinct oscillation frequency and wave form
[1]. Despite these differences in oscillation properties,
SA node cells in the normal heart generate a coherent os-
cillatory wave known as the pacemaker potential which
propagates throughout the heart to stimulate contraction
of the atria and ventricles. The process by which cells
within the node lock onto a common oscillation frequency
is known as frequency entrainment.

Pacemaker synchronization has been studied using
simplified models such as networks of pulse-coupled oscil-
lators [2] in which each oscillator has identical frequency
but diA'erent phase. More recently, synchronization of a
pair of pulse-coupled oscillators with diff'erent oscillation
frequency has been investigated [3]. Perhaps the most
notable conclusion of this study was the lack of non-
periodic dynamics such as quasiperiodic or chaotic
motion as coupling strength was varied. More biophysi-
cally detailed models of pacemaker synchronization [41 in

conjunction with experimental studies [4,5] have provided
strong support for the idea that frequency entrainment is

a consequence of ionic current Aow through gap junction
channels interconnecting neighboring cells. While the
density of gap junction channels is high in atrial and ven-
tricular tissue, it is low within the sino-atrial node [6].
This raises the question of how synchronization of pa-
cemaker cells can be achieved with only a low density of
gap junction channels coupling each cell.

We have been studying this problem using physiologi-
cally detailed models of single rabbit SA node cells, with
model parameters adjusted to fit experimental data on re-
gional variation of cell oscillation properties. These stud-
ies have shown that as few as 4-5 gap junction channels
(each with a coupling conductance of 50 pS) are suffi-

cient to account for frequency entrainment in both cell
pairs and large cell networks [7]. Furthermore, it was
found that at least four dynamic regimes exist as coupling
conductance is increased. These regimes are character-

ized by (I) independent oscillation, (2) quasiperiodic os-
cillation, (3) frequency entrainment, and (4) wave form
entrainment.

In this Letter, we present evidence of additional re-
gimes of complex dynamics. Results are based on numer-
ical bifurcation analyses of resistively coupled model cell
pairs. At low coupling conductance, we demonstrate the
existence of period-k limit cycles interspersed between
quasiperiodic regimes. At somewhat higher coupling con-
ductance, we demonstrate a period-doubling cascade to
chaos [8]. At still higher coupling, we demonstrate bifur-
cation to a periodic orbit corresponding to frequency en-
trainment. The relationship of these complex dynamics
to the origin of certain cardiac arrhythmias will be dis-
cussed.

The SA node cell model used is that of Noble and his
colleagues and is based directly on voltage-clamp data
obtained from isolated cells. Detailed descriptions of the
model are given in [9]. Time- and voltage-dependent
properties of membrane currents are modeled using equa-
tions of the form proposed originally by Hodgkin and
Huxley [10], with parameters adjusted to fit the voltage-
clamp data. An expression for the kth voltage-dependent
outward membrane current Ik (Vt ) is

1&(v, ) =(v, Ek)ak —'"mk(v, )"h&(v, )'",
mk (V, ) =a@(v, ) [I —mk (V, ) ] pp(v, )mk (V, )—, (2)

hk(v, ) =ak(V, )[1 —
ht, (V, )l pk(V, )hk(V, ),— (3)

where V, is trans-membrane potential, EI, is the reversal
potential of the ion(s) to which the kth membrane con-
ductance is permeable, and GI,

'" is the peak conductance
of the kth voltage-dependent membrane conductance.
The peak conductance is multiplied by a factor mi„raised
to the ppth power. This factor assumes values between 0
and 1, and models activation of the kth membrane
current. GI,

'" is also scaled by a factor hp, raised to the

quoth power. This factor ranges from 1 to 0, and models
inactivation of the kth membrane current. Activation
and inactivation variables mi, and hk are solutions of the
nonlinear ordinary differential equations (2) and (3).
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FIG. 2. (a) Three-dimensional reconstruction (using the
delay-coordinate embedding technique) of a torus; coupling
conductance G, =70 pS. (b) Poincare surface of section of (a)
at V(t) = —10 mV. (c) Three-dimensional reconstruction at-
tractor reconstruction at a coupling conductance 6, =152 pS.
(d) Surface of section of (c) at V(t) = —10 mV.

conductance G, =152 pS, and Fig. 2(d) shows the sur-
face of section. The complex arrangement of scattered
points in Fig. 2(d) indicates the trajectory in Fig. 2(c)
may be chaotic.

Figure 3(a) is a bifurcation diagram summarizing the
results of computing Poincare surface sections for cou-
pling values in the range of 1 to 240 pS in steps of 2 pS.
At each coupling conductance (abscissa), one-sided sec-
tions were projected onto the V(t —r) axis (ordinate).
With this approach, motions on a period-k limit cycle
project to k discrete points. For quasiperiodic motion,
projections will ideally form one line segment (if there
are a sufficient number of points on the section). Projec-
tions for chaotic motion will form a number of short line
segments after projection. Hence, in practice projections
of sections for quasiperiodic and chaotic motions are
di%cult to distinguish. In such cases we have therefore
examined the trajectories on the surface of section to dis-
tinguish between these two types of motion.

Figure 3(a) demonstrates three major dynamic regimes
corresponding to G, & 116 pS (regime 1), 116(G,

FIG. 3. (a) Bifurcation diagram illustrating three dynamic
regimes: G, & 116 pS (regime I), 116(G, & 212 pS (regime
2), and G, ) 212 pS (regime 3). Diagram was computed by
projection of one-sided surface of sections computed at various
coupling values (abscissa, pS) onto the V(t —r) axis (ordinate,
mV). A high resolution plot around G, =147 pS is shown in the
inset of (a). (b) Surface of section showing a period-4 trajecto-
ry at coupling conductance 146 pS. (c) Surface of section
showing a period-8 trajectory at the coupling conductance 148
pS.

& 212 pS (regime 2), and G, ) 212 pS (regime 3). For
most G, values in regime 1, the motion is quasiperiodic.
However, there also exist conductance values for which
the attractor is periodic. For instance, a period-6 attrac-
tor occurs at G, =76 pS. The occasional coupling values
giving rise to periodic attractors are interspersed between
those producing quasiperiodic attractors. This is known
as the Arnold's tongue phenomena, and has been studied
extensively for the family of circle maps [13].

At G, = 116 pS, the quasiperiodic attractor collapses
into a period-4 attractor [as shown in Fig. 3(b)]. As G,
is increased, the system goes through a period-doubling
cascade and becomes chaotic at G, = 152 pS. This
period-doubling cascade is confirmed by computing the
surface of sections at diAerent conductance values to
identify successive period-8 [as shown in Fig. 3(c)], and
period-16 (not shown, but computed) attractors, and so
on. To see the first period-doubling bifurcation clearly, a
high resolution plot around G, =147 pS is shown in the
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inset of Fig. 3(a). Note that determination of Fig. 3(a) is

computationally demanding. Hence, it is not realistic to
make a high resolution plot of the bifurcation diagram
for the entire parameter range considered. The final at-
tractor at G, =152 pS has a positive largest Lyapunov ex-
ponent, which we estimate to be approximately 0.16 by
tracking the exponential separation rate of an ensemble
of nearby initial condition pairs. The positivity of the
largest Lyapunov exponent indicates that the attractor at
this conductance value is chaotic (see below for physio-
logical significance of an appearance of the chaotic at-
tractor). To test whether the chaotic behavior is tran-
sient, we have used longer initial integration time up to
800 sec. It is found that the chaotic behavior remains the
same. As 6, increases further, period-5, -6, and -7 win-

dows are observed. These behaviors have been observed
in other chaotic dynamical systems [14]. Finally, for
(I,) 212 pS (regime 3), the attractor becomes a period-
1, signifying frequency entrainment of the two cells [7].

Recent measurements of coupling conductance between
pairs of SA node cells indicate that a typical cell-to-cell
coupling value is 2.5 nS, or about 50 channels [5]. Our
results demonstrate that this level of coupling is about 10
times greater than that required for frequency entrain-
ment. Thus, coupling in the normal SA node is
sufficiently large to assure an order of magnitude "safety
margin" for frequency entrainment. However, gap junc-
tion channel conductance is modulated by factors such as
pH, and internal calcium concentration [15]. In particu-
lar, Noma and Tsuboi [15] have demonstrated an order
of magnitude reduction of gap junction conductance be-
tween cardiac myocytes upon increasing cytosolic Ca lev-

els from about 40 to 400 nM. Therefore, factors which
act to increase intracellular Ca levels could produce sub-
stantial reduction of gap junction conductance. It is well
established that one consequence of ischemia in cardiac
tissue is an increase in intracellular Ca levels that occurs
over a time course of tens of minutes [16]. We therefore
hypothesize that arrhythmias induced by ischemia may in

part result from a gradual drift of coupling through the
regimes of quasiperiodic and chaotic dynamics shown in

Fig. 3.
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