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Kinks in the Kondo Problem
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We find the exact quasiparticle spectrum, elastic S matrix, and free energy for the continuum Kondo
problem of k species of electrons coupled to an impurity of spin S. Here, the impurity becomes an im-
mobile quasiparticle sitting on the boundary. The particles are “kinks,” which can be thought of as field
configurations interpolating between adjacent wells of a potential with k +1 degenerate minima. For
the overscreened case k > 2., the impurity in the continuum is a kink as well, which explains the nonin-

teger number of boundary states.

PACS numbers: 75.20.Hr, 11.20.Dj

It is possible to solve integrable models directly in the
continuum, without recourse to a lattice Bethe ansatz.
First, one finds the spectrum by using simple symmetry
arguments extracted from conformal field theory, the un-
derlying lattice model, exact solutions of related models,
etc. The strict requirements of an integrable theory allow
these guesses to be made precise, and exact quantities can
then be derived. This continuum approach is more than
just convenient: There are cases where it leads to results
previously unsuspected. The classic example is the criti-
cal Ising model in a magnetic field, which is solvable only
in the continuum [1].

The purpose of this paper is show how to apply these
methods to the Kondo problem and other integrable mod-
els with impurities. The idea is simple: One starts with
the quasiparticle description in the bulk, and then finds a
variety of ways of coupling the impurity while keeping
the model integrable. The only complication is in identi-
fying what model has just been solved.

Here we find the exact quasiparticle spectrum in the
general Kondo problem and see that these excitations are
in fact kinks. This gives a simple qualitative picture and
allows us to rederive the exact Bethe ansatz solution. A
nice feature is that everything is always finite: There is
no Fermi sea to fill because we study directly the excita-
tions above the sea. Moreover, we give a simple explana-
tion and derivation of the noninteger number of ground
states on the boundary. Here it follows from the restric-
tions on placing kinks next to each other: With g one-
particle states, there are not necessarily g”v N-particle
states.

The general Kondo problem is a three-dimensional
nonrelativistic problem, consisting of k species of massless
free electrons antiferromagnetically coupled to a single
fixed impurity of spin S by a term A8(x)XA=S;y/ o'y,
in the Hamiltonian (fermion spin indices are suppressed).
By looking at s waves, we restrict to the radial coordinate
and this becomes a (1+1)-dimensional problem where
fermions move on the half line with the impurity at the
boundary. Through a variety of methods [2-4], it was
found that there are two critical points. At A =0, there is
a (high-temperature or UV) unstable one where the im-
purity is decoupled. When this is perturbed, the model
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flows to a (low-temperature or IR) strongly coupled one
where the electrons bond to the impurity and “screen” its
spin. The Kondo temperature Tk is the scale at which
the model crosses over from the region of one fixed point
to the other. Numerous properties can be calculated ex-
actly by using the Bethe ansatz [5-8] or by perturbed
conformal field theory [9,10].

We must first understand the *“bulk” properties of the
model, which are independent of the impurity coupling.
Since the Kondo problem is integrable, we can find the
exact quasiparticles and their exact S matrix in the bulk.
(This is obviously true since the Bethe ansatz solution ex-
ists. In cases when such a solution is not known, one can
use perturbed conformal field theory to find the nontrivial
conserved currents required for integrability [1].) The
quasiparticles are the “physical” left- and right-moving
excitations on the half line. They are massless (i.e., they
have no gap, p= * E) because without the impurity
there is no scale in the problem. Because left-right
scattering is trivial here, we can work on the full line with
only left movers: The particles with x >0 (x <0) are
the original left (right) movers and the impurity is at the
“boundary” x=0. We define the rapidity 6; of a left
mover by E = —p=exp(—6;). Since the bulk problem is
scale invariant the two-particle S matrix can only depend
on the ratio of the two momenta, so we write this as
S1.(0), where 6=0,—6,. Because the model is integr-
able, the individual momenta of the particles do not
change in a collision (complete elasticity) and the n-
particle S matrix is the product of these two-body ones
(factorizability) [11].

The crucial observation is that in this continuum quasi-
particle description, the effect of the impurity is that of a
single immobile particle sitting at x=0. We can derive
the S matrix for a left mover to scatter off of this, be-
cause the integrability implies that this S-matrix element
must satisfy the same constraints as S;;,. The only di-
mensionless quantity is the ratio of the particle’s mo-
mentum to the Kondo temperature Tg; defining Tk
=exp(—6), the S matrix can thus be written as Sg; (8)
where here 8=6; — 6. To understand what the “bound-
ary particle” actually is (i.e., what states it can have), we
will look at the qualitative behavior at the IR fixed point,
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but the exact solution extends all the way up to the UV
fixed point where the impurity decouples.

To find the quasiparticles in the bulk, we investigate
the symmetries. Along with the spin symmetry [which in
the (1+1)-dimensional reduction is an internal, not a
space-time, symmetryl, we have a “flavor” symmetry in-
terchanging the k species of electrons, as well as a U(1)
charge symmetry. These three symmetries can be decou-
pled into the current algebras [9,12]

SUQ),®SU(K),®U(1), )]

where the subscript is the level of the affine Lie algebra.
The technique of non-Abelian bosonization [13] means
that a model with a G, current algebra is equivalent to a
sigma model where the fields take values in the group G
and the Wess-Zumino-Witten (WZW) term is propor-
tional to k. Thus our model in the bulk can be described
by the sum of three sigma models, one for each term
in (1).

Once the Kondo bulk piece is described in this manner,
there is an important simplification: the impurity [an
SU(2) spin] couples only to the SU(2), sigma model [9].
The other parts contribute only to bulk properties. Thus
all we need is the quasiparticles of the SU(2); sigma
model, and these are already known [14-16]. They are
massless, and form doublets under the global SU(2) sym-
metry. However, there is additional structure: Each par-
ticle is also a kink. Kinks occur in models with multiple
ground states. Classically, a kink K, in one space di-
mension is a field configuration which takes the value a at
spatial negative infinity and b at positive infinity. In the
quantum theory, this restricts multiparticle configurations
to be of the form K 3 KpcKcq. ... In our case, the vacua a
run from 1 to k+1, and allowed kinks interpolate be-
tween adjacent vacua. This is pictorially described for
k=3 in Fig. 1. We label the left-moving particle dou-
blets by (uga+1,daa+1). The SU(2) symmetry rotates
u<—d without changing the vacuum indices.

In the simplest case kK =1, the only nontrivial structure
is that of a (u,d) doublet; all the kinks do is go back and
forth between the two wells. The SU(2), model is the
continuum description of the spin + XXX spin chain, so
this statement is equivalent to saying that its spin waves
have spin + [5,171.

We can now find the “boundary particles.” They fol-

FIG. 1. The kink structure for k =3. Each arrow represents
a (u,d) doublet
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low from the qualitative behavior at the infrared fixed
point, which depends crucially on the screening. In the
underscreened case (k <2S), one electron from each
species binds to the impurity, effectively reducing the im-
purity spin to g=S —(k/2). In this case, the boundary
particle can be any member of a (2¢ +1)-dimensional
SU(2) multiplet. For example, for g =+ the boundary is
a (u,d) doublet under the SU(2), just like the bulk parti-
cles. In the exactly screened case (k=2S), the electrons
completely screen the impurity. Thus the boundary
should not transform under the SU(2) and so it is a single
particle. In neither of these cases is there any reason to
expect that the boundary has any kink structure.

The overscreened (k > 2S) case is a little stranger.
The impurity is still completely screened and does not
transform under the SU(2), but there are now ‘“leftover”
electrons. Since there is the flavor symmetry among the
electrons, the impurity must still couple to all of them.
Therefore, if the boundary is to have nontrivial structure,
it must be a kink. We have the nice qualitative picture
that in the underscreened case, the impurity couples to
the spin structure, while in the overscreened case it cou-
ples to the kinks. First look at when there is one leftover
electron (k=25 +1). Here we expect that the boundary
is a kink interpolating between adjacent vacua, just like
the bulk particles. The boundary, however, is not a (u,d)
doublet because spin has been screened out. In the gen-
eral case with p leftover electrons (k =25 + p), we expect
that the boundary is a “multiple” kink, which can inter-
polate farther than just adjacent vacua. To make this
precise while keeping the model solvable, one uses a pro-
cedure called “‘fusion” [18]. This is the kink version of
what we did for the underscreened case. There, to get a
spin 1 boundary particle, we multiplied two spin § repre-
sentations and projected out the singlet. Here one defines
the boundary ‘‘incidence” matrix I,, whose rows and
columns correspond to the vacua; (I,)§ =1 if the vacua a
and b are connected by a boundary kink and is O other-
wise. The kinks in the bulk always have incidence matrix
I, no matter what p is. The I, follow from the analog of
angular-momentum multiplication:

L=l +1p4y, )
where [ is the identity matrix. Thus for the kK =3 case of
Fig. 1,

100
010
1o1] 25
010

S -~ O O

0
1
0
1

O — O =
S O -~ O

0

Thus for k=3 and s = ¥, the boundary spectrum consists
of kink doublets 13, 31, 24, 42, 22, and 33.

Knowing the spectrum on the boundary provides a sim-
ple way to understand the ground-state degeneracy (.e.,
the number of boundary states) at the critical points
[7,8,10]. This number is not necessarily an integer when
the volume of space is infinite. In the overscreened case it
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is not, a fact which the boundary kinks explain nicely. At
the UV critical point, the impurity is decoupled from the
bulk, so the degeneracy is simply the number of states of
the impurity, which is 25 + 1. For the underscreened and
exactly screened IR cases, the answer is equally simple:
It is 28 —k +1. The overscreened case presents an in-
teresting problem: How many states is a boundary kink?
The question is easy to answer. We represent the jth vac-
uum by the vector v; =(0,0, ...,0,1,0,...) where the 1
is in the jth place. Multiplying this vector by the in-
cidence matrix tells you what vacua are allowed to be ad-
jacent to it. Thus the kth entry of the vector I,I{'v; is the
number of /N-kink configurations with vacuum j on one
end and k on the other; the I, takes care of the fact that
the boundary can change the vacuum. The number of
N-particle configurations with periodic boundary condi-
tions and N large is simply A,A{, where ), is the largest
eigenvalue of I,. (Since the bulk particles are massless,
in infinite volume there can be an arbitrary number of
them even as the temperature goes to zero; thus generi-
cally NV is large.) The contribution to the zero-temp-
erature entropy coming from the boundary is thus just
logh,; it is easy to show using (2) that
sinlz(p+1)/(k +2)] 3)
sinln/(k +2)]

This number is the largest eigenvalue of the structure-
constant matrix n% [10], a fact which follows from a
deep result in conformal field theory [19,20]. The matrix
n” is related to the boundary states in any conformal field
theory [20], which hints that kinks appear in any confor-
mal field theory, with n” taking the role of I,; a similar
program has been proposed in [21].

Knowing the particle spectrum, the S matrix is essen-
tially fixed uniquely by the constraints of factorizability,
unitarity, and crossing symmetry [11,15]. For k=1, the
S matrix has already been derived from the Bethe ansatz
[5,17]: The only massless two-particle S matrix for a
doublet (u,d) consistent with factorizability and SU(2)
symmetry is [11,15]

p =

Su(0)u(8)— u(0)u(6,))=200)(0—ir),
S(u(6,)d(6;)— d(6)u(6,))=2z(06)0,
S(u(0,)d(6,)— u(6,)d(6,))=2Z(0)ir,

4
with a symmetry under u<=d. Unitarity and crossing fix
—n|l|/2

Z to be
exp—f < sin cosh cosh(t7/2)

For general k, the simplest poss1blllty (and the correct
answer) is that the scattering in the SU(2) (u,d) labels is
independent of the kink labels:

S1e =Su,d ® Skink -
A two-kink configuration can be labeled by three vacua; a
two-particle S-matrix element can be labeled by four be-
cause only the middle vacuum can change in a collision.
The resulting massless kink S matrix [16,22] is the re-
stricted solid on solid solution of [23],

z)= (%)

m=+1 . ﬂm io/n
“m Imx1 (0)=2(6) W—] sinhy(in— @) ,
-1 ) 12 g 1ol
() =2(0) Pﬂl;—ﬁu] —sinhy6,
. (6)
m_ |mtl 5 Bm+ ,9/,,131
i (@) =2(6) T‘— B sinhy(imn = 0) ,

where B,, =sinh(imyn) and y=1/(k +2). The horizon-
tal line denotes a kink with rapidity 8, and the vertical
with 0y m and m %1 denote the vacua they interpolate
between. The first element, for example, describes the

process
Knm 510 Km 7 1,m(02) — Ko +1(02) Ky +1,m(6)) .

Remember that the allowed vacua run from 1 to k +1,
and adjacent vacua must differ by *= 1. Unitarity and

| crossing restrict Z(8) to be

sinh[(k +1)nxz/2]

@)

1 < dt .
sinhy(6—in) XP3 f—“’ t sintf
This S matrix was effectively confirmed by calculating
the correct bulk central charge [14].

The boundary S matrix Sg; (8) follows from the same
constraints of integrability. For the overscreened case
p=1, the boundary kink structure is the same as the
bulk, so Sg. =Skink as defined in (6). The fusion pro-
cedure then gives the S matrix for arbitrary p up to an
overall prefactor [18]. For p=2,

gl ol

Z(9)=

9—— , (8)

sinh[(k +2)nt/2) cosh(tn/2)

sinh[(k +2 —p)xt/2]

where the thick line denotes the boundary kink, and the
S-matrix elements on the right are those given in (6).
The construction ensures that the result is independent of
the choice of g. One builds up the elements for arbitrary
p by products of the form

IIS o+ %
=0

(2n+1 -p)

| The prefactor Z®(0) is

9

m+p+1|m+1 e g :
)= = + ar . 0
z m+p , expzf—w ¢ MGk +2)7mt/2] cosh(17/2)
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where we suppressed the S,,.

The underscreened case proceeds in the same manner.
When k =25 — 1, the boundary particle is an SU(2) dou-
blet like the bulk ones, so Sg. =S, 4 as defined in (4).
For general underscreening with g=S —k/2, we use the
spin analog of (8). The analog of (9) is that the S-matrix
element for scattering a u bulk particle with the highest
member (S, =¢g) of the boundary multiplet is given by
Z @9(6) from (9) with k — oo,

For the exactly screened case, the answer is not as ob-
vious because the boundary particle is neither a kink nor
does it have any SU(2) structure. The simplest nontrivial
solution of the consistency requirements is

SaL =tanh(6/2 —in/4) . (10)

This result also has some simple analogs. Because of the
lack of structure of the boundary in the IR the irrelevant
operator by which one perturbs is simply the left-moving
energy-momentum tensor T [9]. In the similar flows
from the tricritical Ising model to the Ising model [24]
and from the SU(2); principal chiral model into the
WZW model [15], the irrelevant perturbing operator is
T.Tgr. Both of these cases have a LR S matrix of (10),
so it is not surprising this is true here as well.

With the exact S matrices, we can calculate the exact
free energy by finding the allowed momenta for the parti-
cles on a circle of circumference /, and then using this
constraint to minimize and hence derive the free energy
[24]. This is similar to ordinary Bethe ansatz thermo-
dynamics [25], but here we work with the ‘“physical”
quasiparticles instead of the “bare” electrons previously
used [7,8]. In this approach there are no infinities. We
quantize a momentum p; by demanding periodicity of the
wave function when the particle is “brought around the
world””:

ePIA(0;]6k:01,62, ... . ON) =1, (1)

where A is the eigenvalue for scattering one particle
through an ensemble of all the others and the impurity.
When the S matrix is diagonal, A=J1;S(6; —6,); in our
nondiagonal case one must use some of the formal tools
of the Bethe ansatz to find it. For both parts of our
tensor-product S matrix this has already been done
[15,16,24]; we only need to add the effect of the boundary
particle. We find, of course, the same result as in the
bare calculation displayed in [7,8].

It is reasonable to expect that some of the many gen-
eralizations of the Kondo problem (e.g., the two-impurity
Kondo problem and defects in spin chains) can be exactly
solved by these methods, even if such problems are not
solvable in their bare versions. Determining the spectrum
is generally the most difficult part of such a calculation,
but the methods described in this paper provide the sim-
plest application of such a program. In particular, it is
clear that finding the ground-state degeneracy from con-
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formal field theory provides an important clue to this
structure. We have seen that kinks appear in the Kondo
problem; it would not be surprising for them to appear in
many other impurity problems.
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