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Nonlocal Resistivity in the Vortex Liquid Regime of Type-II Superconductors
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We develop a phenomenological hydrodynamic description of the transport properties of a viscous vor-
tex liquid in realistic geometries with nonuniform currents, including the effects of the boundaries of the
sample. This approach should be useful for modeling multiterminal transport measurements in the vor-
tex liquid regime of, for example, YBCO.

PACS numbers: 74.60.—w

One of the interesting thermal fluctuation efI'ects that
has been observed in the cuprate superconductors is the
existence of the vortex liquid regime over a substantial
range of temperature and magnetic field [1]. The vortex
liquid regime is where loca( superconductivity and vor-
tices occur, since the system is well below its mean-field
transition temperature, but the thermal fluctuations are
so strong that the vortices form a disordered and mobile
liquid instead of the Abrikosov vortex lattice or pinned,
immobile vortex glass that they freeze into at lower tem-
perature [1]. For a bulk, three-dimensional type-II su-

perconductor, the vortices may form vortex lines that ex-
tend over large distances as well-connected extended ob-
jects. As has been stressed by Marchetti and Nelson [21,
such a liquid of vortex lines is rather analogous to a
liquid of polymers and may have a large viscosity. Here
we wish to explore the consequences of the viscosity of
the vortex liquid for the transport properties within a sim-

ple hydrodynamic model. This work is motivated by re-
cent and ongoing multiterminal transport measurements
in the vortex liquid regime of the cuprate superconductors
[3-5].

The essence of why the vortex liquid has nonlocal resis-
tivity is the following: A current density j(r) fiowing at
position r pushes on the vortices at r with the Magnus (or
Lorentz) force. The vortices at r move in response to this
force, but they are connected to (and perhaps entangled
with [2]) vortices extending far away from r. Therefore
the force applied locally by the current at r may induce
vortex motion, and thus electric fields [6], far away from
r.

Here we examine a simple hydrodynamic description of
steady-state (dc) transport in the vortex liquid. We work
in the Ohmic regime only, where the behavior is linear in

the current and the voltage. We look at length scales well

in excess of any microscopic scales such as the microscop-
ic magnetic penetration length and the typical spacing be-
tween vortices. The vortex liquid is treated as incompres-
sible, which is a reasonable approximation for strongly
type-II (large x) superconductors in magnetic fields well

above the lower critical field: H)&H, [. The description
is solely in terms of the current density j(r) and the volt-

age V(r). The steady-state voltage diA'erence between
two points, V(r) —V(r'), is, by Josephson's relation, pro-

cr,p (k) =cr,p+ rt~rgpkykb.
-(nI) (2)

One may also define the momentum-dependent nonlocal
resistivity tensor p

" (k), which is the inverse of ci " (k).

portional to the rate of phase slip between the points,
which in turn is proportional to the rate at which vortex
lines cross the line connecting the two points. Thus the
electric field, E(r) =VV(r), is a measure of the average
local velocity of the vortices [6]. A more detailed
description might consider the distribution of local vortex
orientations in the liquid at r and the vortex velocity as a
function of this orientation; however, we will study the
simpler description where one just keeps track of the local
electric field.

The force on the vortices at position r is a sum of (i)
the current-induced forces, such as the Magnus force,
which are proportional to the local current density; (ii)
viscous drag forces, which are proportional to second spa-
tial derivatives of the local vortex velocity; and (iii) fric-
tional drag forces [6] (e.g. , Bardeen-Stephen drag) which
are proportional to the local vortex velocity and thus E.
In the steady state these forces must add to zero. The
proportionality coe%cients are all tensors; following Mar-
chetti and Nelson [2], we may write this zero total force
condition as

j.(r) + tl.pry') p8„E~(r)=cr.pZp(r),

where the subscripts take on the values x, y, and z, denot-

ing the components of the vectors or tensors, and repeat-
ed indices are summed over. Under conditions of uniform

j and E, o.,p is the usual conductivity tensor. Note we

have assumed the material is uniform, so the tensors a
and ri do not depend on r. We also assume that higher-
order gradients than those in (1) do not play an impor-
tant role. The viscosity of the vortex liquid is encoded in

the tensor g. This tensor is defined so that the viscous

drag force is equal to the force that would be produced by
an additional current density of e,rt,p„b8pBrE&, where e,
is the unit vector in the u direction. We will treat the
problem for general o and q first, and look at a specific
simple example later.

For an infinite material (1) may be simply solved in

momentum (i.e., Fourier) space, yielding a momentum-
dependent (thus nonlocal) conductivity:
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In real space we then have

(~.pa. ap ~.p„,a.apa, a.) v(r) =o (4)

The bulk equations (1) and (4) must be supplemented
with boundary conditions to obtain the steady-state
current and voltage patterns for a given sample geometry.

We consider an ideal surface in the following sense:
The vortices at the surface feel viscous drag due to their
velocity relative to neighboring vortices inside the sample,
but none from outside the sample, where there are no vor-
tices. Thus the viscous drag these surface vortices feel is
just as if the local vortex velocity, and thus E, is un-
changed as one moves from the surface outward. Thus
E(r) may eA'ectiveiy have discontinuous first spatial
derivatives at the surface and, by (I), the current may
therefore contain a delta-function part Rowing in the sur-
face. Physically, this delta function of current density is
presumably spread over some microscopic distance. If we
consider a local coordinate system where the z axis is nor-
mal to the surface and pointed inwards and the surface is
at z =0, the current in the sample near and at that point
on the surface is

E,(r) = dr'P~p' (r —r') jp(r'), (3)

where the tensor nonlocal resistivity kernel, p
"' (r), is

the Fourier transform of p
"' (k).

How does the resistivity kernel fall off with distance?
The nonlocal conductivity, cr "' (k), is nonzero and ana-
lytic at small k, so p

"' (k) is also. The nearest zero of
ci "' (k) to k=o is at a complex momentum of order
Ja/g. This implies that p" (r) falls oA' exponentially
for large r, with the decay lengths for its various com-
ponents being of order v ri/cr T.hese decay lengths are
the viscous penetration lengths for the vortex liquid. A
particular case of these viscous screening lengths was in-
troduced by Marchetti and Nelson [2] in analyzing the
elfects of strong pins such as twin boundaries on the liow
of the vortex liquid. They focus on the "shear" com-
ponent of the viscosity which arises due to vortex-vortex
interactions or vortex entanglement [7].

A real piece of material is always finite, with boun-
daries, and it is at the boundaries (the contacts) that the
current is injected and withdrawn from the material. In
the bulk of the sample in steady state the current must be
divergence-free, V j =0. This means that away from the
boundaries of the material, the voltage obeys

j) =~~E~ ~ (8)

jx =x&x —
g

'Ex

Only the x component of the resistivity is nonlocal, with

where, again, z is the coordinate normal to the surface.
The other boundary condition is that the delta-function
part of the divergence of the current at the surface is
equal to the current injected at that point on the surface,
I(s), where s denotes a point on the surface. At the con-
tacts I(s) may be nonzero, but the integral of I(s) over
the entire surface must vanish. This boundary condition
1s

[~,.a. v(r) g,.—„a.apa, v(r) ~.„,a.a, a,v(r)] ).
=I(s), (7)

where the dummy index a' is summed only over the coor-
dinates (x and y) within the local surface, while the other
dummy indices are summed over x, y, and z.

There are a number of cases where one can solve (4),
(6), and (7) to obtain the voltage and current patterns.
Here we will present one simple example. Consider a lay-
ered superconductor with a uniform magnetic field orient-
ed normal to the layers. Let us assume we are in a re-
gime where the interactions between "pancake" vortices
[8] just above one another in adjacent layers are the only
important vortex-vortex interactions. Thus the com-
ponent of the viscosity we will include is that involving
vortices moving within the layers but with different veloc-
ities in adjacent layers. It may be called the "tilt viscosi-
ty." This component of the viscosity couples to deriva-
tives normal to the layers of the components of the elec-
tric field oriented parallel to the layers. To simplify, let
us neglect the Hall effect and assume the system and
boundary conditions are translationally invariant along
one direction parallel to the layers. Thus we have an
effectively two-dimensional problem. %e label the axis
parallel to the layers as x, and the axis normal to the lay-
ers and parallel to the field as y. %e thus consider the
situation where the only elements of o and g that are
nonzero are cr», cr~~, and il„z~„.Let us drop most of the
subscripts and call these elements o. , o.„,and g, respec-
tively.

In this simple case we have

j.(r) =o.pEp(r) —ri.pysapa„Es(r)
(nl) (k)

a +gk~2
(lo)

ri„„a,a,V(r) ~, + =0, (6)

8(z) ri.„p(—a, Ep(r) (, 0+),

where the subscript z is not summed over.
One boundary condition is that the delta-function com-

ponent of the current must be Aowing parallel to (thus in)
the surface. In terms of the voltage this condition is

Let us consider a simple rectangular sample oriented
parallel to the x and y axes, with contacts only on the top
and bottom of the sample (the x axis is horizontal), as
studied in Refs. [3-5] and illustrated in Fig. 1. In this
sample geometry, Eq. (4) for voltage reads

a'v a'v a'v
CXx + 0'y"ax' ' ay' ax'ay'
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This determines completely the voltage pattern V(x,y)
given the input and output current patterns in terms of
i„—'s. The delta-function sheet of current Aowing on the
top and bottom of the sample is easily computed to be

B V
Ip(x, ~d) = ~ g Bx y

I,n flÃ a sin nz'x 0
2 2 2

n 1 0'y+ rin 7i /a
(20)

FIG. I. The sample geometry considered in the text. The
magnetic field is parallel to the y axis,

with the boundary conditions (7);

Bv B'v
x — —

q
By Bx „=p,

—
q 2

=+ l(x ~d),Bv B'v
y Bx By y=~d

(i 3)

where I(x, ~ d) are the patterns of external current
sources and sinks on the top (y=1) and the bottom
(y = —d) of the sample. We may write the voltage as

U„(y)=C„cosh(K„y)+S„sinh(K„y)
with

(is)

z a„
a ay+ rin 2+2/a '

and for n =0

Uo(y) =Co+Soy,

where C0 sets an arbitrary zero for the voltage. We may
write the current sources and sinks at the contacts as

I(x, ~ d) = g i„cos(nnx/—a ),
n 0

~here i0+ = —i0, from the condition that the integral of
the net current injected over the entire surface must van-
ish. Solving Eqs. (11)-(13),we get

Sp = t p /o'y,
~ 0 +

&n In~n=
2(nn/a) cosh(K„d)[cr„(ay+rin 2+2/a 2)] 'i2 '

n&0,

(i 9)

C„=—
~ + t +

&n In

2(nn/a)sinh(K„d) [cr„(ay+gn2n2/a2)] 'i2

n &0.

V(x,y) = g U„(y)cos(nxx/a),
n=0

where a is the sample length along the x direction. From
(11),we then find for n )0

To see how the effect of viscosity shows up in transport
experiments, we consider two simple experiments. First,
consider the experiment done in Refs. [3] and [4] where
the current is injected at the upper left contact and with-
drawn at the upper right contact in a sample as in Fig. 1.
Let Vt,p and Vb«t, ~ denote the voltage drops measured
across the two central contacts on the top surface and the
two opposite central contacts at the bottom surface,
respectively. For a given o„,cr, and g, we first define the
"apparent" conductivities, cr„' and oy'. These are the
conductivities calculated from the measured Vt, p and
Vbo«om using Eqs. (15)- (19), assuming ri =0, i.e., assum-
ing that the material is simply an anisotropic local con-
ductor. Of course, in the normal state, where @=0, the
apparent conductivities are the same as the true conduc-
tivities o'„and rry. However, they start to differ in the
liquid regime where q is nonzero. Let us then ask, for the
first experiment, how the apparent conductivity ratio
ay'/a~' behaves as a function of ri. It can be demon-
strated from Eqs. (15)-(19) that the ratio ay /cr i is a
monotonically decreasing function of the voltage ratio
V«„/Vbo«,m. Also, for a given pair of real cr„and ay, the
voltage ratio Viop/Vb «om is a decreasing function of g in

the large g regime, where the ratio of the viscous length

Qri/&x„ to the sample thickness exceeds a geometry-
dependent number. These two facts together indicate
that for this first experiment oy'/0 ' is an increasing
function of q at fixed cr and cr~ in this large g regime.
This can be most easily understood in the large viscosity
limit (g ~). For the experiment we are now consider-
ing, the current Aowing in the x direction pushes the vor-
tices in the direction perpendicular to the x-y plane. In
the large viscosity limit, the vortex velocity is the same at
the top and the bottom of the sample, so Vt,„=Vb«t,m.

For a local conductor, identical voltage drops at the top
and bottom (Via„=vboii,m) occur in this experiment only
when oy'/a„' diverges. Thus when ri diverges, here it
causes the "apparent" conductivity along the y direction,
o~, to diverge. The vortices do move in response to the
current so o.„remains finite. In this q ~ limit the
current actually Bows only in the top surface of the sam-
ple.

Let us also consider a second experiment, where we in-
stead ~ithdra~ the current from the lower left contact
(still injecting it at the upper left contact). Now we mea-
sure V~,ft and V„;gh&, which are the voltage differences be-
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tween opposite contacts on the top and bottom surfaces at
the two central contact positions. In this experiment the
apparent conductivity ratio o~'/o„' is a monotonically
increasing function of Vi,it/V„.sht. For fixed real o., and

a~, the measured voltage ratio V)en/V„;sht, however,
remains a monotonically decreasing function of the
viscosity g. Thus, in this second experiment, an increase
in the viscosity leads to a decrease in the apparent con-
ductivity ratio o~' /o„'; in the large t) regime this is pre-
cisely opposite to the first experiment. In the large
viscosity limit (r) ee) for this second experiment, the
currents Aowing in the top and bottom surfaces are equal
and opposite, and their contribution to the x component
of the electric field cancels, leading to no voltage drop
along the x direction, but the voltage shows a drop in the

y direction due to the uniform current ]lowing across the

sample from top to bottom. So, in this second experi-
ment, the apparent conductivity remains finite along the y
direction but diverges along the x direction as the viscosi-

ty diverges.
Thus the effect of nonlocal resistivity is to give an in-

crease in the apparent o~'/cr„' in the first experiment
where the net current Aows in the x direction, while it
gives a decrease in the apparent a~'/ax(' in the second
experiment when the net current Aows in the y direction.
Note that in both experiments the increased viscosity
causes the strongest enhancement in the component of
the apparent conductivity in the direction perpendicular
to the net current How. Recent unpublished measure-
ments [5] on YBCO crystals in the vortex liquid regime
do observe such behavior as the temperature is reduced.
The observed behavior [5] is quite inconsistent with that
of an anisotropic local conductor (g =G).

In summary, we have explored, within a simple hydro-
dynamic model, how viscosity of the vortex liquid aAects
the transport properties of type-II superconductors in the
vortex liquid regime. This eAect of viscosity is reflected
in a macroscopic way as a nonlocal resistivity and should
be detectable in the voltage patterns seen in multitermi-
nal transport experiments. Explicit calculation of the

current and voltage pattern is sample specific and in gen-
eral hard as it requires solving a fourth-order partial
diAerential equation with complicated boundary condi-
tions. However, it can be worked out explicitly in a few
special cases and, in this paper, we have presented a de-
tailed calculation and some discussion of one such specific
case.
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