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We investigate models which have more than one coupling constant and which have no (codimension
one) fixed point in the renormalization group Aow in an e=4 —d expansion. We show that the pseudo-
critical behavior of these systems is dominated by a minimum in the How. By using the local potential
approximation of the renormalization group, the properties of such minima are described. If a minimum
is "good enough,

" it can fake a fixed point, but there are corrections to the relation between the ex-
ponents. Finally, we show that similar results hold in an t.' expansion.

PACS numbers: 64.60.Ak, 05.70.Jk, 75. 10.Hk

In this Letter, we will study models that do not have a
fixed point in the renormalization group (RG) IIow in an
t. =4 —d expansion. The first class of models arises from
the study of the long distance properties of frustrated an-
tiferromagnets, or of the Stiefel nonlinear sigma model
V„ t, =0(n)/O(n —p) [1,2]. It can be viewed as a
straightforward generalization of the Heisenberg model.
The field p is a real nxp matrix and the Hamiltonian is
0 (n) x 0 (p) invariant,

H = d xTr~p~V'p+mTrv ~p

+ZiTr(v tv )'+lz(Trv tp)'.

The main difterence from the usual Heisenberg model is
the appearance of a second quartic invariant (we assume
p) 2). For p=2, the two columns of the matrix ~p can
be combined into a single complex n-component vector,
and this model has been used to describe some supercon-
ductors, frustrated 3osephson junction arrays, and
superfluid helium 3. The second class of models arises
from the study of phase transitions for superconductors,
smectic liquid crystals, or electrodynamics. The fields are
an n-component complex vector p and a scalar gauge field
3 such that the Hamiltonian is globally U(n) invariant
and locally U(1) invariant,

The important common feature with the model (I) is the
presence of two coupling constants A, and e which have
the same dimension [X] = [e] =4 —d.

Soon after the advent of the RG, the flow for these
models was computed by using the a=4 —d expansion
[see [1] for (I) and [3] for (2)]. Because there are two
coupling constants, four fixed points can exist at one loop
order. Two fixed points are always present. One is the
trivial Gaussian fixed point (of codimension 3) and one
describes a system with a different symmetry [X|=0 for
(1) and e=0 for (2)] and is of codimension 2. Because
we are interested in a phase transition, that is, in a fixed
point of codimension one, we want to focus on the two
other possible fixed points. The trouble is that they can
or cannot be present depending on the value of n. If n is

large enough n & n„with n, =20p for (I) and n, =183
for (2), there is a pair of fixed points and one of them is
the desired fixed point with codimension one. If n is

smaller than n„ these two solutions move into unphysical
complex values. The introduction of higher order terms
in the e expansion will not change the situation for e
small, although it can for e =1. For the experimental ap-
plications, we are interested precisely in this small n

domain n=1, 2, or 3. In this case, the flow runs away to
infinity, and the usual conclusion is a "fluctuation in-

duced first order" phase transition.
We feel uncomfortable with this conclusion for several

reasons. First, it is based on a negative result (the ab-
sence of a fixed point in a perturbative expansion), but it
does not show that, indeed, the system undergoes a first
order phase transition below d=4 (however, see [3]).
Second, we have the results of the Monte Carlo simula-
tions in three dimensions. They indicate generically
second order phase transitions (see [2] for the Stiefel
model). Finally, on the experimental side, some of the
systems which should fall in those universality classes ex-
hibit first order transitions. Yet, there is also a whole

body of experiments which exhibit continuous transitions.
The key observation of this work is the following: Even

if the IIow has no fixed point, it may have a minimum
(i.e. , a slow point), and if the minimum is "deep enough"
it can mimic a fixed point for practical purposes. For ex-
ample, the correlation length becomes very large, al-
though not strictly diverging. The system behaves almost
as if it had a second order phase transition.

In order to turn this idea into a quantitative theory, we

need a norm for the flow and search for the points where
this norm is minimum. A metric in the tangent space to
the parameter space of the model should be introduced in

order to define this norm. As a first step, we are working
with the local potential approximation (LPA) of the RG.
In this framework, the RG flow is given by a diAerential
equation. From the diA'erential equation, we inherit a
natural mathematical structure, and in particular the
necessary metric. We can then define a minimum in the
flow and investigate the properties of the system in the
neighborhood of the minimum. As a second step, we are
carrying the structure built in the LPA into the perturba-
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tive computation of the P functions in an e expansion.
In the LPA, the RG is reduced to a semilinear partial

differential equation, providing us with a natural mathe-
matica1 structure. This approximation has been derived

by several authors [4] and is discussed in [5]. It is similar
to the hierarchical models in the sense that it involves

only a potential t!(p) and that rt=0. For a model with n

fields p;, i =1, . . . , n, 8; =8/8p;, the local potential ap-
proximation of the RG is given by

d —2
p(p;, t) =8; p — p;8;p+dp lnt2,

with ti ~ 0 and where p(&p;, t) =exp[ —v(p;, t)] is the
density corresponding to the potential v, d is the space
dimensionality, the "time" t corresponds to the cutoff
A =Apexp( —t), and the time derivative is denoted by an

overdot. We make no assumption about the symmetries
of p with respect to p;. Let us ca11 0 the space of p; then

p(p) is a mapping from 0 to the corresponding tangent
space TA. We define the operator L„, mapping TQ to it-
self, by

(3)

L„:=at'/at =a,'
2

v;8;+d(1+lnp) . (4)

This operator is essentially self-adjoint on the space
L2(IR",g(p)d"p) with the measure given by g(p)
=exp[ —(d —2)/4p ]. With respect to the scalar prod-
uct in TQ defined by (plP) =f d"py(p)g(p)p(&p), L
possesses real eigenvalues yA and orthonormal eigenvec-
tors yg. A fixed point p* of the RG Aow satisfies

B,p*=0, and the linearized flow around p is given by

L„~. Rgb' =L„.b'p. Therefore the eigenvalues of L„.cor-
respond to the critical exponents of the RG at the fixed

point p*. The scalar product in TQ induces the norm

II@II =(ply)'t . As motivated above, we are interested in

a more general condition where the density p* corre-
sponds to a minimum of the Aow, that is, when llpll is

minimum. These densities are the solutions of the equa-
tion BIIpII /tip(p') l„„.=0. By computing the derivative
and inserting the definition of L, we get the equation for

p

dv t2(v )g(v )L„(v,v ') „.=0. (5)1 Bllpll

2 8p(v ') „.
This equation has the solution p* =0, but we are interest-
ed here in the solution corresponding to p*&0. The Aow

can be expanded on the base y, p =Pt, Pq yt„and by hy-
pothesis, some of the coefficients Pt, are different from
zero. By projecting Eq. (5) on yj, we obtain —,

' fdp'
xpllplI2/Bp(p')yj(p') =P~yj =0. Therefore, at a mini-
mum of the Aow, some of the eigenvalues of L„have to be
zero. For the sake of simplicity, let us assume that the
minimum behaves in a similar way to a fixed point corre-
sponding to a second order phase transition; that is, it
possesses only one relevant direction. In this case, the
spectrum of L„.has the structure

yp=d &y~ =1/v&y2=0 &y3 & (6)

with the corresponding density and flow

p* =aoyo+ a~yp,

p = —da2y2, Ilp*ll =dla2l .

(7)

The first eigenvalue of L is equal to d since p* is positive.
[The first eigenvector of an operator is of a given sign, let
us say positive; by orthogonality, the next eigenvectors
have no definite sign. In order to ensure p* ~ 0, we must
have ap&0. Because of Eq. (3) and because by hy-
pothesis y~ &0, we obtain yp=d. ] This first eigenvalue
corresponds to a multiplication of p by a constant, or to
an additive constant on the potential. The corresponding
eigenvalue is yp =d. This direction is therefore trivial be-
cause it does not enter into the thermodynamics of the
system and it will be omitted below.

We can linearize the Aow around the minimum p* by
taking @=@*+Bywith Bp=+t, 8aqyt, and we obtain
the Aow for the coe%cients:

y + o ~ ~
V

2
Apg = (10)

c, lrl

with y(r) = —Ilpllv c/l n(c, rll/c). This form is valid in

the domain of reduced temperatures:

exp [—c/(II p II v) ] « c, l r l /c « 1 . (11)
Therefore, we see that the minimum of the flow wi11

y«1,

k&2, Sat, (t) =Bag(0)exp(yt, t),
k =2, Sa2(t) = —da2t+&a2(0) .

As usual, perturbations increase (decrease) exponentially
along the relevant (irrelevant) directions corresponding to
k=1 (k ~ 3). In the direction k=2, the flow has con-
stant speed and the perturbations from the minimum are
kept constant. The perturbations from the minimum are
functions of the temperature T. As usual, we take the
perturbation along the direction k=1 to be proportional
to the reduced temperature Ba~(0) =C, r, z =(T—T, )/
T,. In principle, Ba2(0) is also a function of T, but we
assume that this dependence is regular enough and can be
neglected.

Starting in the critical region, that is, close to the
minimum, the "time" t needed to flow outside the critical
domain measures the number of length scales that are in-

tegrated out and this is basically the correlation length.
Neglecting the irrelevant directions, the time t necessary
to flow at a distance c (c—1) of the minimum p* is given

by c =II@(t)—p*ll =c, r exp(2y&t)+ [da2(0)t] . The
corresponding correlation length is given by Ap( =exp(t).
By eliminating t, we obtain the equation for the correla-
tion length:

c 2r 2 (A g ) 2/v+
II p II 21n 2(A g ) c 2

In the domain of temperatures where the term containing
Ilpll is small, we obtain the correlation length as a func-
tion of the reduced temperature:
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a =2 —v(d fiilpil/c), — (12)
where fi can diff'er whether in the high or low tempera-
ture phase. We can also introduce an external magnetic

behave almost like a fixed point for a broad domain of re-
duced temperature around the transition. The quantity
llpllv/c measures the "quality" of the minimum. The
smaller this number, the better the minimum will fake a
true fixed point. It is only for reduced temperatures very
close to zero, c, (r ~/c&&exp( —c/llpllv), corresponding to
very large correlation lengths Aog » exp(c/lip ll), that we
will observe a significant deviation from the usual power
law. In this case, since the flow is going neither to the
high nor to the low temperature fixed point, the behavior
of the system is given by the flow downstream of the
minimum. We may ultimately reach another fixed point,
or have a first order phase transition. Nevertheless, if the
quality of the minimum is good enough, this domain may
be out of reach, experimentally or by numerical computa-
tions. Therefore, although the system possesses no fixed
point, it behaves practically as if it had one.

The constant c is fixed by the condition that, for the
density p, the corresponding correlation length is of order
1 and c may have different values in the low or high tem-
perature phase. As the RG corresponds to a relative
change of length scale, we have no information about ab-
solute length and therefore we are not able to compute c.
Besides, the metric g is defined up to an arbitrary multi-
plicative constant go so that c =lip(t) —p*ll will depend
on the choice of go. This constant also sets a scale for c„
but the quantities c,/c and Ilpll/c are independent of the
particular choice of go.

The flow around a minimum shows, nevertheless, an
important difference from the flow around a fixed point.
For the sake of simplicity, let us neglect the irrelevant
directions. Starting close to a fixed point, the flow leaves
the critical region along the direction yi. In the case of a
minimum, the flow exits the critical region in the plane
span by y~ and y2. This difference has consequences on
the scaling relations. The minimum can be viewed as a
very dispersive medium for the RG trajectories. Let us
denote by 0 the angle of exit from the critical region with
sin8=c, r(AO()'t"/c and we are interested in the region
8=+ n/2. We obtain at lowest order 8(r)= ~ [n/2
—y(z)]. Let us consider now the free energy (per
unit volume) f. It satisfies the scaling law f(p)
=(AOL) f(p') where p' is computed at scale L =A
Starting in the critical region p =p*+Bp, taking L =g,
and taking r such that 8= tt/2, we obtain f(r )
=(Aog) f+(y) where f+. is a regular function of y,
the indices + referring to the high and low temperature
phases. By expanding f into a power series around zero
f(y) =f(0)[1+fiy+O(y )], at lowest order we obtain

f(r) =(Aog) ' " '. The specific heat is given by the
second derivative of f. When defining the exponent a by
the usual scaling law C„=i, we obtain the relation be-
tween the exponents

field which scales with the exponent d —d„= (d + 2
—rt)/2. Proceeding along similar lines, we obtain the re-
lations for the exponents P for the magnetization P= v(d —2+ rl

—2m~ llpll/c)/2 and y for the susceptibility
y=v(2 —tl+gillpll/c). The coefficients m~ and gi come
from the Taylor expansion around 8= + tr/2 of the scal-

ing function for the magnetization and susceptibility, re-

spectively, and can differ whether in the high or low tem-
perature phase. The coefficients f~, mi, g~, and llpll are
universal constants because they do not depend on the
bare model but only on the critical point and its neighbor-
hood. Therefore, the minimum manifests itself by univer-

sal corrections to the usual relation between the critical
exponents. Let us add that these corrections may be
difticult to observe experimentally because they are of the
same order as the logarithmic scale of temperature where
we can expect scaling.

The presence of a minimum also has consequences on

the finite size scaling relation. Let us consider for exam-
ple the free energy f with the above scaling law. Take
the scale L as the finite size of the sample, and eliminate
r in the right-hand side for the (infinite volume) cor-
relation length g(r ). We obtain the relation f(r, L)
=L f[L/(, (llpll/c)l (nA )]. Thus, the scaling func-
tion f does not depend only on L/g but still on lnL and,
therefore, there is no finite size scaling.

The corrections to the relations between the exponents
as well as the breakdown of the finite size scaling may be
at the origin of the difticulties in the analysis of the nu-

merical simulations for frustrated antiferromagnet sys-
tems [6,71, pyrochlore antiferromagnets [g], or the Stiefel
models V22, V32, and V33 [2]. In the latest, the poor
finite size scaling of the system has already been ob-
served, as well as a negative g exponent if the relation
y= v(2 —rl) is assumed valid. Besides, equation (3) can
be solved numerically for model (1) with two n-com-

ponent vectors [9]. In three dimensions, the models with

n &4.8 have a fixed point and a minimum for n &4.8.
This is in agreement with the Monte Carlo simulations of
the system V„2 [2] and roughly in agreement with the
4 —e expansion at second order [10]. The exponents
v are v =0.69 (n =5), v =0.63 (n =4), and v =0.63
(n =3).

Let us now turn to the a=4 —d expansion. The usual
description of the RG is a complex recipe involving loop
expansion, Feynman diagrams, regularization, (minimal)
subtraction of divergences, etc. In this recipe, we do not
have the natural mathematical structure present in the
LPA, and in particular we do not have a metric in the
tangent space. Nevertheless, let us try to carry on the
main idea of the LPA. Similarly to the preceding section,
let us call 0 the space of parameters of the model, with
dim(Q) =N, and p a point in this space. For example,
for the model V„z let us take p = jp ' =Xi,p =X2j, N =2.
The beta functions define a vector field in TQ: —P„=p
=p(p). Similarly, we define the operator L„as L„p
=Bp'/Bp~, a,P =1, . . . , N with its eigenvalues and
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eigenvectors L„yk =yI, yk. We want to introduce a
metric in TQ, with (p~ y) =p'g, py~ for p, y C TA, such
that we can define the norm of p. What are the natural
constraints on g? We want the eigenvectors yI, of L„ to
form an orthogonal basis. This is equivalent to the condi-
tion (gL„)t =gL„and this gives N(N 1)/—2 equations
fixing basically the off-diagonal terms of g. In order to
satisfy these equations, g has to depend on p (this is not
the case in the LPA). Because the eigenvectors are
defined up to multiplicative constants, there are no nor-
mality constraints; i.e., the equations (iA ~ yi, ) =1 are
meaningless. Another natural set of conditions for g is

p. 'Bzg,Iip~=0 for y= 1, . . . , N and this gives N more
equations, so that g is completely specified (up to a multi-
plicative constant). Because g depends on p, this leads to
partial differential equations for the diagonal elements of
g. This approach is therefore more complicated than
with the LPA. Having such a metric, we can now search
for a minimum p* in the ]]ow —,

' t),(p~p) =g,ALP„pal=0.
By assuming that such a metric exists, we can take a
short cut in order to define the minima. As for the LPA,
we can expand the vectors p and p in the base yk. At a
minimum p* (with one relevant direction), we have

p is parallel to y~ or L„*p=0,
(13)

and we take these two equations as a definition of p*.
These equations do not contain the metric and are there-
fore much simpler. We can add the remark that we can
weaken the second condition on g by requiring it to be
true only at p* and not everywhere in A. At this point,
we have the necessary mathematical structure and we can
parallel the computations of the preceding section. The
same general behavior of a minimum will hold. More-
over, in an t.'=4 —d expansion, a minimum will be of or-
der e, and therefore llpll —e. We now see how a system
can continuously change its behavior from mean field.
There is a region of temperature of order z —exp( —1/e)
which is not controlled by the minima and in which the
thermodynamic singularity differs.

Let us add some general remarks, not necessarily relat-
ed to the particular scheme used for the RG. The pres-
ence of a minimum in the flow can be viewed as the
consequence of the two complex solutions for the zero of
the flow. Even if these complex solutions are unphysical,
they will dominate the behavior of the system through the
minimum. These fixed points and the corresponding
minimum are bifurcating from the trivial solution at
d=4. Therefore, in principle we can compute the proper-
ties of the minimum in a systematic e expansion (or in a
X expansion at fixed dimensions). Eventually for finite e,
the two complex zero and the minimum will meet and
produce a pair of real fixed points. But there is no need
to do a simultaneous analytic continuation in the n space
[10] to follow the real fixed point; we can work with a

fixed model. The LPA indicates that the three-dimen-
sional Stiefel models with p=2 and n=3 or n=4 are
indeed governed by a minimum [9], and this seems in

agreement with Monte Carlo simulations [2]. On the
other hand, if a system has a pair of fixed points close to
collapsing, the second eigenvalue of the tangent operator
should be close to zero. This means that important
corrections to the leading scaling are to be expected, a be-
havior close to that of a minimum. Besides, there is the
possibility of several fixed points and/or minima, with
their respective basins of attraction.

The properties of a minimum may appear similar to a
crossover phenomena. In this case, the system behavior
crosses over from a codimension two fixed point toward a
codimension one fixed point. But a minimum is similar to
a codimension one fixed point in the sense that only one
parameter should be adjusted in order to be a pseudocriti-
cality. The analogy holds in the sense that in one direc-
tion, the minimum leaks toward a fixed point. But the
rate of the flow is very different, exponential for a cross-
over whereas linear for a minimum. Therefore the analo-

gy is to be taken only in the very broad sense that
different domains of temperatures are governed by two
different domains of the RG flow.

To conclude, we have shown that systems which have
no fixed points in the RG flow may have an almost second
order transition. The system will "mimic" a transition
with well-defined critical exponents. Experimentally,
such a behavior manifests itself by corrections to the rela-
tion between the exponents, and, if accessible, by cross-
overlike phenomena. In Monte Carlo simulations, besides
the previous effects, finite size scaling does not hold.
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