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The steady states of a crack moving in a triangular lattice are calculated and shown to become unsta-
ble at a certain velocity.
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There is a long-standing problem in the dynamics of
fracture. Cracks in brittle materials are supposed to ac-
celerate up to the Rayleigh wave speed [1,2] according to
theory [3-5], while experiments seldom show them
exceeding half this speed [6-9]. The problem is actually
about energy balance. Cracks suddenly cost much more
energy to propagate as they exceed a critical speed on the
order of half the theoretical limit, but no one quite knows
why.

There is no lack of possible mechanisms; as cracks pass
the critical velocity the fracture surface becomes rough
[7,8, 10], the tip of the crack heats up by hundreds of de-
grees [11,12], and the crack is loud, emitting sound over
a wide range of frequencies [13]. The difficulty lies in the
fact that these phenomena have been hard to derive from
the continuum theory that describes crack motion [14].
Cracks have had low terminal speeds in some numerical
simulations [15,16], but the simulations have been as
difticult to interpret as the experiments.

Slepyan [5,17] first discovered that the dynamic frac-
ture of lattices [18] provides a natural setting in which to
try to resolve this problem. In a series of beautiful calcu-
lations he analyzed cracks moving in simple two-
dimensional lattices, and found that they naturally in-
volve the emission of high-frequency waves. The main

goal of this Letter is to show that steady-state cracks in a
triangular lattice become unstable at a critical velocity,
and begin to undergo oscillations with features reminis-
cent of experiment. One way to interpret this result is
that it resolves ambiguities [3] in a continuum instability
first noted by Yoffe [19]. The calculations do not yet
constitute a quantitative explanation of fracture experi-
ments, but from a qualitative point of view they are en-
couraging.

Figure 1 describes the model we will consider. A crack
moves in a lattice strip composed of 2(N+ I) rows of
mass points. All of the bonds between lattice points are
brittle-elastic, behaving as perfect linear springs until the
instant they snap, from which point on they exert no
force. The location of each mass point is described by a
single spatial coordinate u(m, n), which can be interpret-
ed as the height of mass point (m, n) into or out of the
page [20]. The index m takes integer values, while n

takes value of the form 2, 2, . . . , N+ 2 . The model is

described by the equation

u (m, n) = bu+ —— g 7 [u (m', n') —u (m, n)],1
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FIG. l. Lattice model of fracture. The equilibrium locations of mass points are indicated by the white dots, while the black dots
indicate the displacments u(m, n) of mass points out of the page once stress is applied. The top line of dots is displaced out of the

page by amount u(m, iV+ 2 ) =642N+1, and the bottom line into the page by amount u(m, —N —
2 ) = —AJ2N+1. Lines con-

necting mass points indicate whether the displacement between them has exceeded the critical value of 2 [see Eq. (2)l. The crack tip
has just reached location m =0.
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with

V(u) =ue(2 —u) (2)

This boundary condition strains the lattice and provides
the driving force for crack motion. The constant a is very
small, and the form of the boundary condition indicates
that one plans to search for a steady state moving at ve-
locity v. The factor of J2N+1 simplifies subsequent re-
sults.

A steady state in a lattice is more complicated than one
in a continuum; it is a configuration which repeats itself
after a time interval a/v, but moved over by one lat-
tice spacing. Taking the lattice spacing a to be 1,
u(m, n, t) =u(o, n, t —m/v), which means that all hor-
izontal spatial behavior is contained in the time history of
any single point on a horizontal line. %'e now suppose
that a crack runs along the center of the strip. One by
one, the bonds connecting u(m, 2 ) with u(m+1, —

2 )
or u(m, —

& ) break. They break because the distance
between these points exceeds the limit set in Eq. (2) and
as a consequence of the driving force described by Eq.
(3). Supposing that these are the only bonds which snap
(an assumption to which we will later return) it is easy to
calculate the motion of all the mass points above the line
n =

& as a function of the mass points on the line n = 2,
since in any region where the bonds do not snap the mod-
el has simple traveling wave solutions. Having thus
solved for behavior in the vertical direction, and having
exchanged behavior in the horizontal direction for time
history, the whole problem reduces to an integral equa-
tion for the time evolution of a single mass point, u(t).
The most convenient variable is one which describes the
bonds which break along the crack path:

u(t) = [u(0, —,', t) —u(0, ——,', t)]/2.

In steady state, one has the symmetry

u (m, —,', t ) = —u (m, ——,', t —1/2v),

using which one obtains

u+(~v)Q(to)+ u (to) = 2a
J2N+1 tv +a

In this expression,

(4a)

(5)

representing the brittle nature of the springs, - 0 the step
function, and b the coefficient of a very small dissipative
term. The boundary condition on the upper and lower
surfaces of the strip is

u (m, + [N + —,
' ] ) = + J2N + 1A

and

I 2 . 3 —cos(ai/v ) —to —tbtoy=z+az —1 with z =
2cos(co/2v)

(7c)

Recall that a is very small, so that the right-hand side of
Eq. (5) is a delta function.

Equation (5) is of a type which can be solved by the
Wiener-Hopf technique [22]. The trick is to write

Q( )=Q /Q, (9)

where Q is free of poles and zeros in the lower complex
co plane and Q+ is free of poles and zeros in the upper
complex plane. Then Eq. (5) can be separated into the
sum of two pieces, one of which has poles only in the
lower half plane and one of which has poles only in the
upper half plane, and being equal, must equal a constant.
For u(t) not to be singular at t =0 the constant must be
zero, and one has

—
( )

5 Q (co)

J2N+1 Q (0)(a+ito)
(lo)

and a similar expression for u+.
The analysis can proceed along two complementary

paths from this point. On the one hand, one can solve Eq.
(10) directly, using the fast Fourier transform. The
decompositions required for Eq. (9) are carried out by
taking the logarithm of Q, Fourier transforming, multi-

plying by an appropriate step function, inverting the
transform, and exponentiating. This procedure is suc-
cessful since lnQ(tv) vanishes for large values of co.

However, one discovers that there are roots and poles of
Q near the real axis, kept away from it only by small

imaginary parts proportional to b. Physically, these roots
and poles correspond to traveling waves induced by the
crack tip. One way around this problem is to insist on
resolution in the Fourier transforms that is much finer
than the scale set by the dissipation b Another pos. sibili-

ty is to remove these roots before carrying out the trans-
forms and to treat their product separately. This pro-
cedure has analytical advantages as well.

The second path for analysis of Eq. (10) notes that for
large to, u —I/(a+ito) This large .cv behavior de-
scribes a discontinuity in u at t =0, giving

It is assumed in writing Eq. (5) that the bond between

u(0, 2 ) and u(0, —
2 ) breaks at t =0. In order for that

to be true, one must pose the extra condition

u(t =O) =1.

u —(tv) =

—2z cos(to/2v)+ 1,

dtoe'"'u (t)0(+' t ),
Q( )

F(tv)
F(co) —

1
—cos(co/2v)

'

tx —i] —ta —&]

F(~) =i ~

(7a)

u(t =0) = Q (~)
J2N+1 Q

This quantity is exactly what is needed to be found when
bonds snap, as in Eq. (8). In order to proceed one divides
the real (up to terms of order b) roots r; and real (up to
order b) poles p; out of Q as follows:
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Q( )=+ '
Q( ).

co —r;—
(12)

The poles and roots are divided into two categories:
Those with a superscript + are to be grouped with Q+
and therefore have very small imaginary parts below the
real axis, while those with superscript —go with Q and
have very small imaginary parts above. Q has a symme-
try which does not hold for Q, namely, Q(ro) =Q( —cu)

(up to terms of order b). Using this symmetry, it is easy
to show that

Q (~)Q'( —~)=Q (0)Q'(0). (13)

One uses this relation, the regularity of Q (ro) at
infinity, Eq. (12), Eq. (11), Eq. (8), and Eq. (9), to ob-
tain

+ &/z

u(r =0) =1 =~+
ri pi

(14)

In order to evaluate this expression, one has to find the
real roots and poles of Q. The number of these is propor-
tional to the height of the strip Ã, but there is a numeri-
cal procedure that finds them extremely quickly. These
results are somewhat diAerent from those of Slepyan
[17], because we have worked in a strip rather than an
infinite plate [23], a choice that makes it possible to
check numerical and analytical methods against one
another.

Our results are summarized in Fig. 2, which was pro-

duced by calculating 5 from Eq. (14) for N=100, and
many values of t|. What the diagram illustrates is that
for a given external driving force 6 many steady states
are theoretically possible, each with different roots and
poles r;p;, and therefore emitting diAerent quantities of
radiation. This radiation is at frequencies on the order of
v, in units where the lattice spacing is 1, so in most realis-
tic settings it would manifest itself experimentally as
heat.

Finding steady states in this way is not sufficient to say
that they are physically acceptable. Steady states with
0 & v & 0.244 do not exist, because they violate the condi-
tion that t =0 must be the earliest time at which the bond
between u(0, z ) and u(0, ——,

' ) reaches 2. For u in this
range, explicit calculation of the solutions shows that this
bond stretches to a distance of more than 2 at negative
times (without breaking), snaps back, and reaches 2
again at t =0. Similarly, the states with v & v, =0.577 do
not exist. For N =9, at a velocity of U, =0.577. . . ,
d, =1.158. . . , in units where the lattice spacing is 1 [19]
the bond between u(0, —,

' ) and u(1, —,
' ) reaches a distance

of 2 after the bond between u(0, z ) and u(0, —
& )

snaps. The steady-state solutions strained with larger
values of h, are inconsistent; only dynamical solutions
more complicated than steady states, involving the break-
ing of bonds off the crack path, are possible. To investi-
gate these states, we return to Eq. (1) and numerically
solve the model directly.

Some results from these direct numerical investigations
are contained in Fig. 3. The diagram shows patterns of
broken bonds left behind the crack tip. Just above the
threshold at which horizontal bonds begin to break, one

0.90
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h, =1.147
v=0.559

0.54 h, =1.165
v=0.546
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h, =1.376
v=0.541

0.00 h, =1.835
v=0.671
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FIG. 2. Steady-state velocities as a function of external
strain 6,. The velocity v is measured in units where the lattice
spacing is 1, and the long-wavelength sound speed is J3/2. The
thick lines indicate cases in which the steady states are known
to be stable. Zero velocity states at strains 6) 1 correspond to
the phenomenon of lattice trapping (Ref. [21]).

FIG. 3. Pictures of broken bonds left behind the crack tip at
four different values of h, . The top figure shows the simple pat-
tern of bonds broken by a steady-state crack. At a value of 6
slightly above the critical one where horizontal bonds occasion-
ally snap, the pattern is periodic. Notice that the mean velocity
decreases relative to the steady state, although the external
strain has increased. As the strain h, increases further, other
periodic states can be found, and finally states with complicated
spatial structure.

2419



VOLUME 71, NUMBER 15 PH YSICAL REVIEW LETTERS 11 OCTOBER 1993

expects the distance between these extra broken bonds to
diverge. The reason is that breaking a horizontal bond
takes energy from the crack and slows it below the criti-
cal value. The crack then tries once more to reach the
steady state, and only in the last stages of the approach
does another horizontal bond snap, beginning the process
again [24]. Analysis of linear stability shows that conver-
gence to steady states is exponential, and occurs exactly
at rate b, where b is the damping in Eq. (1). This picture
leads to the conclusion that the frequency v with which
horizontal bonds snap should scale above the critical
strain h,, as

v- —b/ln(1 —a, /a), (15)
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