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Probability of Second Law Violations in Shearing Steady States
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%'e propose a new definition of natural invariant measure for trajectory segments of finite duration for
a many-particle system. On this basis we give an expression for the probability of fluctuations in the
shear stress of a fluid in a nonequilibrium steady state far from equilibrium. In particular we obtain a
formula for the ratio that, for a finite time, the shear stress reverses sign, violating the second law of
thermodynamics. Computer simulations support this formula.

PACS numbers: 47. 10.+g, 05.20.—y

A;p;(r) = exp[ —g„i+a; „r]
g;exp[ —g„~+t; „r]

Here the index i =1, . . . , M labels phase space trajectory
segments I; (t) on each of which the system spends a time
r (0» t ( r). M is, in our simulations, of the order 10 .
A; is the product of expanding eigenvalues of the stability
matrix [2,6] of the trajectory segment i and [);„/ the set
of corresponding positive local Lyapunov exponents, as
indicated by the + signs in the summations over the in-

Recently some progress has been made in relating mac-
roscopic nonequilibrium properties, such as the transport
coeScients of many-particle systems, to the dynamical
chaos of their phase space trajectories [1-5]. In particu-
lar, the two-dimensional modified Lorentz model has
been studied [3-5], using the natural invariant measure
for cycle expansions in terms of unstable periodic orbits
in a dynamical system [3,4]. Although a rather complete
theory has been developed for this system where one par-
ticle moves through a periodic triangular array of hard
disks, the methods used so far are limited to this very spe-
cial model. Motivated by these one-dimensional results,
we propose in the present paper a generalization of the
dynamical measure, as yet not well founded, but poten-
tially very useful for the study of many-particle systems
in or far from equilibrium. In particular, we study a
nonequilibrium stationary state of a Auid under an exter-
nal shear and conjecture a natural invariant measure for
trajectory segments of this many- particle system [6].
This allows us to derive an expression for the ratio of the
probabilities to find the Auid on a phase space trajectory
segment of duration z in a dynamical state with an in-

duced shear stress in the direction of or opposite to, re-

spectively, the externally imposed shear rate. The second
case constitutes, for a finite time z, a violation of the
second law of thermodynamics.

The normalized natural invariant measure of a multidi-
mensional system we propose as [6,7]

dex n in (1). Equation (1) and all r-dependent equations
in the following, are to be interpreted as specializations
for finite z of the corresponding equations for the entire
trajectory, obtained for z

Using (1), stationary state averages can be computed.

(2)

is a time average of the phase function 2 over the seg-
ment i, then the average of A over all segments i all of
duration z is

(3)

=exp =exp[lVd(a;), r] . (4)

Here one has used that [2,8]

gX; „=—lVd(a, ), , (5)

where % is the number of particles of the system and d is
the dimension of space. We emphasize that (4) only in-

volves (a;)„ i.e. , the sum of all Lyapunov exponents asso-
ciated with the segment i (which is, as will be shown

below, related to the dissipation of energy on the trajecto-
ry segment i in the nonequilibrium stationary state), not
the sum of the positive Lyapunov exponents alone. This
enables us to make simple statements on the relative

Before applying the measure (1) to a many-particle
system in a nonequilibrium stationary state we note that
in general the ratio of the probabilities for a trajectory
segment i to be in a state i or in a state i defined belo~,
for which the signs of the corresponding Lyapunov ex-
ponents are reversed, is given by

p; exp[ —g„(+X;„r] exp[ —g„i+a;„r]
p, » exp[ —g„)+X,» „r] exp[++„i X; „r]
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weights of any states of the system, even those far from
equilibrium. To the best of our knowledge such a formu-
la is not in the literature, where instead of the dynamical
weights used here, nonequilibrium distribution functions
appear derived from the equilibrium Gibbs distribution,
without incorporating a thermostating mechanism to as-
sure the existence of a stationary state [91 [cf. Eqs. (6)
below].

Although we would like to test Eq. (1) directly, statist-
ical fluctuations in the value of X; „amplified by the ex-
ponentation in Eq (1. ) make a direct numerical test of
that equation very diScult. This reduces us at present to
a test of Eq. (4). To that end we consider a nonequilibri-
um stationary state of a fiuid driven by an external shear
rate y=Bu, /By, the gradient of the x component of the
local fluid velocity u in the y direction, and coupled to a
thermostat to assure a stationary state. The equations of
motion of the particles in such a system are the so-called
SLLQD equations [8]:

q,
=' + yy, . P. =F.—yp---p' (6)

a=a(I ) =- Pxy Vy

,p,'/m
' (7)

and a; in Eq. (4) is given by (7) specialized to the trajec-
tory segment i and similarly for P„y;. In Eqs. (6) and
(7) and subsequent equations, all quantities are interpret-
ed as dimensionless [2], by scaling them with the particle
mass I and the parameters e and o. of the steeply repul-
sive Weeks-Chandler-Anderson (WCA) potential 4(r)
[10], used here to compute the interparticle forces Fjj'
@(r)=4e[(a/r) ' —(a/r) ]+a for r ( 2' a and
%(r) =0 for r ) 2'jsa, where r is the interparticle dis-
tance. For this potential the flow is assumed to be hyper-
bolic, as for a hard sphere fluid.

We now apply the ratio (4) to determine the probabili-
ty of occurrence of two dynamical states of segment i,

Here j=1, . . . , 4' labels the 1V particles of mass m of the
Iluid, pj =mqj —imu„(qj. ) is the peculiar momentum
of particle j with respect to the local fluid velocity
ux(qj) =yyj, i is the unit vector in the x direction, and Fj
is the intermolecular force on particle j. a is determined
using Gauss' principle of least constraint [8], keeping the
internal energy Ho(I ) =gjpj/2m+@(q~, . . . , qjv) fixed,
where I =(q;, p~, . . . , q~, p~) is the phase of all particles
and @ is the total potential energy of the fluid, leading to

dHO(I )/dt = —a(I")gpj /m —P„y(I ) Vy=0.
J

Here P„y(I ) is the microscopic pressure tensor

N

Pxy(~) V = Z PjxPjy/m 2 Z xjj'Fjj', y Ij 1 j~j

where Fjj is the force on j due to j' (Fj =pj't~j~Fjj),
x~~ =qj„—qj„, and V is the volume of the fluid. Thus

denoted by i and i, which have a given value of the pres-
sure tensor (P„y;), and its opposite, (P y;x), = —(P„y;)„
respectively. We note that the state i~ seen in the com-
puter simulations is not the time reversed state i of i
which has (P, ;z), =(P„y;), [since P y(I ) is an even
function of p] but also —

y instead of y, as M (q, p, y)
= (q, —p, —y), where M is the time reversal operator.
The observed state i with —(P„y;), and y is obtained
from the state i by the transformation M =M M,
where M (q, p, y) = (x, —y, z,p„, —

py, p„—y) [81, which
leaves the SLLQD equations as well as y invariant. This
state i has Lyapunov exponents opposite to those of the
state i, since M (but not M ) changes their signs; i.e.,

k K A, ' 2+d — +]. Therefore we can apply (4) to com-
pute the ratio of probabilities to find a segment i with a
value of the pressure tensor (P,y;), equal to a given value

P„y, or to its opposite —P„y„respectively, as

=exp, g [Nd(a;), z]/g 1, ,
P Pxyi I

where P* indicates that in the exponent only those
dynamical states i for which (P„y;),=P„y, should be tak-
en into account. Equation (8) states that the probability
of seeing an i state with Pxy & 0 lasting a time r is ex-
ponentially smaller than that of seeing the corresponding
i state with Pxy, &0 of segment i. The exponent is pro-
portional to Nd(a;)„a generalized rate of entropy pro-
duction during z in the segment i (see below).

The molecular dynamics simulations were carried out
for N =56 disks, in d =2, interacting with a WCA poten-
tial, using Lees-Edwards periodic boundary conditions
[8], for an internal energy per particle Ho/N =1.56032, a
number density n=Na /V=0. 8, shear rates y=O. I and
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FIG. 1. The probability distribution of segment averages,
(P,~;)„of the xy element of the pressure tensor for 56 &CA
disks at Ho/N=1. 56032, n =0.8, a shear rate y=0.5, and a
segment time r =O. I. For those states where (P„~;), =P„~, is
positive the entropy production is negative for a period of time
r, counter to the second law of therrnodynarnics.
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FIG. 2. The logarithmic probability ratio 11(P„»,) and
(a), ,p, , as a function of the segment averaged shear stress
Pzy (P y, ,), for z =0. 1 6 and y =0. 1 . As can be seen the two
curves are essentially linear [11],with very nearly equal slopes.
The agreement between the two slopes becomes progressively
better as z increases. The straight line shows the results of a
weighted linear least-squares fit to the logarithmic probability
ratio data.
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FIG. 3. The slope obtained from the probability ratio H as a
function of z for y=0. 1 and 0.5. The error bars are for most of
the data smaller than the plotting symbols. The smooth curves
show weighted least-squares exponential fits. For y=0. 1 the
asymptotic fitted slope, namely, —0.0633 + 0.001, agrees
within estimated statistical uncertainties with the slope of
—0.06259+ 0.00003, predicted from the (a), ,p, , data using
(8) (and indicated by the arrow). For y =0.5 the corresponding
slopes are —0.313+ 0.01 and —0.3137+' 0.0003 (indicated by
the same arrow), respectively, consistent with the proportionali-
ty of a and y.

0.5, and various times ~ ranging from 0 to 2. The solu-
tions to the equations (6) and (7) for q;(t), p;(t) allow an
evaluation of (a;)„by using (7) to compute a time aver-

age over the trajectory segment I.
In Fig. 1, the observed probability distribution function

of (P„«;), over the segments i = I, . . . , M is plotted. The
distribution is approximately Gaussian with a mean of
about —1.116. The right hand tail of the distribution
function, where (P„«;),& 0, is due to segments i, where
for a time i, the second law of thermodynamics is violat-
ed. With increasing r these violations decrease and for
z ~, the second law requires that P„«, (0 and
(a), &0 (cf. Fig. 3).

In Fig. 2 the ratio of the probabilities of observing seg-
ments i and i in states characterized by the values
P «, =(P„«;), and —P„«„respectively, are considered.
Plotted are II(P «, ) =—ln[p(P„«, )/p( —P„«,)]/2Nz as well
as (a), p, , (the average (a), of (a;), over all segments i,
at given (P «;), =P„«,) as a function of P„«„ for y=0. 1

and z =0.16. As can be seen both functions are essential-
ly linear in P ~, and have very nearly identical slopes
[11]. The dashed line is a weighted least-squares fit. For
increasing r both functions remain linear, but the slope
of II(P„«,) becomes progressively less negative, while that
of a remains constant. Equation (8) implies that the two
slopes should become identical for r ~. This is shown
in Fig. 3, where the slope of II(P„«,) is plotted as a func-
tion of z for y=0. 1 and y=0.5. In determining the
slope, a weighted least-squares fit of the data was used.
One sees that for i ~, the slopes indeed approach the
corresponding z-independent slopes of (a), t, for

~, indicated by the arrow. The agreement with Eq.
(8) is very good. While this result is a check of Eq. (4)

rather than Eq. (1), it can nevertheless be considered as
an indirect check of our conjectured dynamically generat-
ed natural measure Eq. (1). We remark that the seg-
ments i must be large enough for their measures p; to be
essentially independent of each other, but small enough
that Auctuations P„~, and —P„~, can be observed.

In the limit r ~, when the segment i becomes the
entire phase space trajectory and for large N, Nd(a;), /ka
(kg is Boltzmann's constant) can be considered as a gen-
eralized rate of entropy production of the system [12].
This follows from Eq. (7), if one identifies the temper-
ature T of the system with the kinetic temperature
(gj~=~pj /2m)/Ndkq, where the average is a time average
over the entire trajectory. Thus the measure (1) can be
considered as a dynamical replacement of the Gibbs dis-
tribution function [9] applicable also to nonequilibrium
stationary states of realistic many-particle systems, possi-
bly very far from equilibrium, suggesting the usefulness
of the dynamical weight method in nonequilibrium sta-
tistical mechanics.

We hope that these equations will be tested on other
problems in statistical mechanics as well.
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