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Validity of perturbative estimation of renormalization factors in weak matrix element calculations in

lattice QCD is examined for the K -K mixing matrix by comparing results for gauge invariant and

noninvariant operators. A large disagreement found for uncorrected results for the two cases is shown to
be removed by the one-loop renormalization factor. This indicates that the large scaling violation in the
mixing matrix previously reported is not due to an artifact of prescription of lattice calculations. Our es-

timate of Btt for the continuum in quenched QCD is 0.61(13)-0.83(7).

PACS numbers: 12.38.6c, 14.40.Aq

The calculation of weak matrix elements is one of the
most important tasks of numerical simulation of lattice
QCD. In particular the evaluation of the matrix element
Bg which appears in K -K mixing is of much practical
importance, in that its accurate knowledge is indispens-
able for exploring the phenomenology of the Cabibbo-
Kobayashi-Maskawa matrix, especially of CP violation.
A few calculations have already been made for this end
[1-4], but the most recent one [4] using the Kogut-
Susskind quarks has revealed an important problem in

such work; the resulting 8~ does not show scaling with
the lattice spacing, and hence the value depends on that
of the coupling constant P =6/g at which it is evaluated.
The question then arises as to whether one-loop perturba-
tion theory is adequate for estimating the renormalization
factors needed to match lattice results with the continu-
um physics; there is no guarantee for its validity. A fur-
ther doubt was cast [5] on the use of gauge noninvariant
operators [3,4] to extract the matrix element, which

might cause a large scaling violation of a nonperturbative
origin that cannot be corrected by one-loop calculations.
These are serious points, since if true, they should invali-
date the conventional procedure to calculate matrix ele-
ments using lattice QCD.

We have investigated this point by explicitly employing
two diff'erent operators for B~, one gauge noninvariant
and the other gauge invariant. Indeed, we found a large
discrepancy between the matrix element obtained with a
gauge invariant operator and that obtained with a con-
ventional gauge noninvariant operator; even the quark
mass dependence is significantly difterent between the
two. We found, however, that a one-loop perturbative
correction with an appropriate choice of the coupling con-
stant brings the results, including the quark mass depen-
dence, virtually into agreement. This not only wipes out
our worry concerning the use of gauge noninvariant
operators, but also greatly alleviates our doubt against
the use of one-loop renormalization corrections to extract
the physics in the continuum.

Our study is made with both quenched and full QCD.
For quenched simulations we used 10 configurations
separated by 1000 pseudo heat-bath sweeps on a lattice of
a size 24 X40 at P=6.0 and 32 X48 at P=6.3. For full

QCD we analyzed 26 configurations separated by 25 tra-
jectories generated on a 20 lattice and duplicated in the
time direction at P =5.7 with two flavors of dynamical
Kogut-Susskind (KS) quarks of a mass mqa =0.01 and
0.02, which have already been used for spectroscopic
analysis [6]. We work with the KS valence quarks with
the m'ass set to m„a =0.01, 0.02, and 0.03 (0.01 and 0.02
for P =6.3 in the quenched case).

The K meson 8 parameter is defined by

&K'~sy„(1 —ys) d s y„(1 —y, )d ~K'&

-', &K'~sy„ysd ~0&&0)sy„ysd IK'&

To calculate the numerator we follow the method of Ref.
[3] and rewrite the four-quark operator as a sum of
four terms Vt+V2+Ai+A2 with V~ =(V„),b(V„)b„
V2 (Vjg)aa(Vp)bb~ ~t (+a)ab(+p)ba~ and ~2 (+p)aa

««(~t )ab
=q (yt, ys 4s )q and (V„),b =q'

x(y„(s)q are the axial-vector and vector currents in

the spin-Aavor notation for KS fermions with a, b the
color indices. Quark fields in the first current in V; and
A; are to be contracted with K and those in the sec-
ond with K . For the denominator in (1) we use
&K'((w„)..(0&&0)(w„)bb (K'&.

In terms of the KS fermion fields the operators above
are nonlocal and gauge noninvariant. The previous calcu-
lations [3,4] employed these operators. In our work we
also use gauge invariant operators constructed by insert-
ing gauge link variables between the quark fields with
contracting color indices and summing over all possible
shortest paths for the insertion.

We create K and K mesons by two wall sources0 0

placed at the edges of the lattice. Gauge link variables
are fixed to the Landau gauge throughout the entire lat-
tice. Quark propagators are calculated with the Dirichlet
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(periodic) boundary condition in the time (space) direc-
tion. Fits to extract the numerator and the denominator
of (1) are made over the time slices 12( t ~ 28 for lat-
tices with the temporal size T =40 and over 16 ~ t ~ 32
for those with T =48. Errors of B~ are estimated by a
jackknife procedure.

Our raw results for B~ are shown in Fig. 1 for the
quenched calculation at P=6.0. The lower branch of
data corresponds to those with gauge noninvariant opera-
tors, which show a good agreement with the results of
Refs. [3,4]. On the other hand, the upper branch, which

gives Bg with the gauge invariant operators, grossly
disagrees with B~ from the gauge noninvariant operators;
even the quark mass dependence diAers substantially be-
tween the two calculations.

In order to interpret the lattice results in the continu-
um theory, wave function renormalization corrections are
generally necessary. For the axial-vector current (2„)„
in the denominator of (1) it is given by Zz =1 —12.233
xg /16m for the gauge noninvariant current in the Lan-
dau gauge [7,8] with Z~ defined as A„""'=Z~A„'", while
for the gauge invariant current Z~ =1.

The renormalization factor for the four-quark opera-
tors may be written as

(rtcont(p) (b + (g /16+ )(y lnpa+c cont clat))glattice

(2)
where i,j =1, . . . , 4 corresponds to Vl, V2, A~, and A2
and p denotes the renormalization scale for the continu-
um operators. The matrix y;J is given by

e

9 —3 —7 —3
yg J 0 0 |3 1 + 6 2 |30

in a 2x2 block representation, and c;J'"' and cJ" are the
finite renormalizations in the continuum and on the lat-
tice. In the continuum, using a finite mass for gluons to
regularize infrared divergences, we find c;J'"'= » y;J for
massless quark for naive dimensional regularization
(NDR) with the modified minimal subtraction (MS) sub-

0.85

B ]3=6.0 quenched

0.80

0.75

traction scheme. The dimensional reduction with the EZ
subtraction scheme [9] yields cga"' = i'2 y;1. The dif-
ference in the corrected values of B~ for the two schemes
is small (2%), and we use the NDR scheme for the nu-
merical results below.

For the gauge noninvariant operator in the Landau
gauge the lattice finite part c~l" takes the values [7]

lat
IJ

37.446 —2.913 —5.253 —2.251
0 28.706 —4 502 1.501

—5.253 —2.251 37.976 —4.504
—4.502 1.501 0 24.464

(3)

where a finite gluon mass is used to regularize infrared
divergences as in the continuum. The results agree with
those of Ref. [10]. For the gauge invariant operator we
obtained [7]

lat
V

—18.915 —4.772 —5.253 —2.251
0 —60.000 —4.502 1.501

—5.253 —2.251 —19.51 3 —2.977 . (4)
—4.502 1.501 0 0

0.85

0.80

(=6.0 quenched

The elements in the second and fourth row are already
known and our results coincide with those in the litera-
ture [11] after correcting for the difference in the method
of regularizing infrared divergences. The values in (3)
and (4) above are for massless quark. Corrections due to
finite quark masses are negligibly small for the range of
quark masses used for our analyses.

In evaluating perturbative corrections there is uncer-
tainty as to which gauge coupling constant and which
value of p should be used. We take the mean-field im-
proved MS coupling constant at the scale p =x/a, evalu-
ated by 1/gMs(x/a) =P/g +0.02461 with P the pla-
quette expectation value [12]. With this scheme the scale
is naturally given by p =x/a. The result is shown in Fig.
2. We see that the two calculations now show a good
agreement with each other.

lt may first seem difficult that the discrepancy between
the two calculations can be removed by the renormaliza-
tion factor which depends little on mq. It is important to
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FIG. 1. Raw results for Bz for the quenched calculation at
P=6.0. Open circles (squares) are for gauge invariant (nonin-
variant) operators. Crosses represent the results of Refs. [3,41
for gauge noninvariant operators.
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FIG. 2. Comparison of 8& before (open symbols) and after
(filled symbols) renormalization correction.
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FIG. 3. Same as Fig. 2 for two-flavor full QCD with the sea

quark mass m~a =0.01 at P =5.7.

1.20

1.10
B

1.00

0.90

0.80

0.70

0.60

/=6.3

(=6.0

)=5.7 (full QCD)

o a non-inv

~ 0 Inv
I I

0.16O. i 20.040 0.08
a(fm)

FIG. 4. Renormalization group invariant Btr=aMs(tt/a)
&&Bs(tr/a) as a function of the lattice spacing a fixed by the p
meson mass. Circles are for quenched QCD and squares for
two-flavor full QCD with the sea quark mass of mrna =0.01.

observe in this context that the two matrices (3) and (4)
have completely dilferent structures. The matrix (3) is
close to diagonal with the diagonal entries similar in

value to the correction factor (Z~) for the denominator
of B~. Thus it gives rise only to a slight shift of Bz after
correction, as was already noted in Ref. [3]. On the other
hand, the matrix (4) for the gauge invariant operator is

largely deviated from the unit matrix, which subtly
aAects the summation of the four terms and brings the
curve with the gauge invariant operators into agreement
with that with the gauge noninvariant operators.

In Fig. 3 a similar figure is shown for full QCD at
P=5.7 with the sea quark mass mqa =0.01. The large
disagreement seen between the bare values [13] (open
symbols) are brought into a very good agreement after
the renormalization correction (filled symbols).

We present in Fig. 4 the renormalization group invari-
ant quantity Btt =aMs(tr/a) Btr(tr/a) as a function of
the lattice spacing a which is determined from the p
meson mass. The values of B~(tr/a) are extracted by an
interpolation of simulation results to the physical K
meson mass. We observe that the quenched values,

which agree between the gauge invariant (filled circles)
and noninvariant (open circles) operators, exhibit a sub-
stantial decrease of about 15% between a =0.11 fm at
P=6.0 and a =0.07 fm at P=6.3. Thus a large scaling
violation originally indicated by the results of Ref. [4] is
not an artifact of their using the gauge noninvariant
operators. Making an empirical extrapolation of the
form Btc(a) =Btt+ca" with n =I or 2 we obtain B~
=0.61(13)-0.83(7) as our estimate of Btc in the continu-
um limit in quenched QCD.

Let us finally remark that including dynamical quarks
does not seem to lead to a noticeable change of the value
of the Btt parameter. In fact the full QCD results plotted
by squares in Fig. 4 lie close to the interpolation of
quenched data, indicating that the bulk of sea quark
eAects is absorbed into a renormalization of scale.
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