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Lattice QCD Calculation of Full Pion Scattering Lengths
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Full pion four-point functions at zero momentum are calculated with Kogut-Susskind quarks on a
12 X20 lattice at P =5.7 and mv =0.01 in quenched lattice QCD, employing the wall source method
without gauge fixing. For both I=0 and 2 channels, results for the s-wave scattering lengths are in

agreement with the prediction of current algebra and PCAC (partial conservation of axial-vector
current).

PACS numbers: 12.38.Gc, 11.40.Fy

While a lot of numerical techniques have been devised
to study hadron physics based on lattice QCD, the variety
of physics explored is so far quite limited. The quantities
which have been computed are only those which can be
extracted from connected hadron two-point functions, or
a restricted class of multipoint functions whose calcula-
tion can be reduced to that of connected two-point func-
tions. As a result, even for the simplest case of pion
four-point functions, only the diagrams relevant for the
I=2 channel have been evaluated [1,2], with the physi-
cally more interesting I=O and 1 channels left unex-
plored.

The difhculty stems from the necessity of calculating
quark propagators connecting two arbitrary points of the
lattice, which requires L x T inversions of the quark ma-
trix with the conventional method of point source on a
lattice of size L x T. The problem can be solved partially
with the use of the wall source [3] and calculating quark
propagators for T walls. This method has the additional
advantage that Fierz-rearranged contributions, which
complicates the analysis for two pion sources placed on
the same time slice [2], can be avoided. In this Letter we

report on a calculation of the full pion four-point func-
tions at zero momentum using this method in quenched
lattice QCD with the Kogut-Susskind quark action on a
12 X20 lattice at P=6/g =5.7. We obtain a clear sig-

nal for attraction for the I =0 channel and that for repul-
sion for I =2. The results for the scattering lengths show
agreement with the prediction of current algebra and
PCAC (partial conservation of axial-vector current) [4],
allowing for systematic uncertainties in the calculation.

Let us consider scattering of two Nambu-Goldstone
pions with zero momentum tr(t) =g„(—I ) '+ l*lg(x, t )
xg(x, t) in the Kogut-Susskind fermion formalism. The
diagrams contributing to the four-point function (tr(t])
x tr(t2)tr(t3)tr(t4)) are shown in Fig. 1. The direct (D)
and crossed (C) diagrams are calculable for arbitrary
values of the time t3 and t4 using only two wall sources
placed at the fixed time slices tI and t2. This allows a
calculation of the I=2 scattering length, which has been

X2, X3

(2)

Using the relations G, (n") =Q„D„ t„,) and Gt(n;n')
=(—1)"+"G(n';n), we easily see that (2) yields the rec-
tangular amplitude of the four-point function up to terms
for which the quark loop does not close at the time slices
E] or I, 4.

These terms create gauge-variant noise. One way to
suppress the noise, employed in all recent work with wall
sources, is to fix gauge configurations to some gauge and
choose a particular wall source so that it emits only the
Nambu-Goldstone pion [3]. We take an alternative way,
which in fact was used in the initial work of extended
sources [5], of carrying out the gauge field average

t3

(b) C (c) R (d) V

FIG. 1. Diagrams contributing to pion four-point functions.

attempted previously [2]. The rectangular (R) and vacu-
um (V) diagrams, necessary for the 1=0 channel, require
additional quark propagators connecting the time slices t3
and t4.

We calculate these diagrams from T quark propagators
corresponding to wall sources at each time slice on an
L x T lattice, which are defined by

D„„G,(n") =+6„(„,&,
X

with D the quark matrix for the Kogut-Susskind fermion.
For the rectangular diagram we then write

C (t] t2 t3 t4)

= g («Tr[Gt (x2 t2)G&, (x2, t2)Gt (x3 t3)G] (x3 t3)l).
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E —2m =—4+a() ao ao
3

1 +c ] +C 2
m I' +O(I/L'),

(3)
where c] = —2.837297 and c2=6.37S 183. The energy E
is extracted from the large t behavior of the pion four-
point function calculated with t] =0, I, 2=1, t3=t, and
t 4

= t + 1. In practice we calculate the energy shift
6E =E —2m from the ratio

C~ 01 t t+1
C.(o, t)C.(l, t+ I) '

without gauge fixing. Wall sources are advantageous
since the summation of the gauge-variant terms over spa-
tial sites of the wall further reduces gauge-variant noise
in addition to cancellations among configurations. We
found in our simulation that the method works well for
the four-point function within practically manageable
statistics.

The vacuum diagram can be calculated in a similar
manner, and the method also applies to the direct and
crossed diagrams. Let us note that the present method
yields the four-point function for all possible values of
t ~, . . . , t 4. Choosing t ~ &t 2 one can therefore avoid the
rearrangement of quark lines of two pions due to color
Fierz transformation, which occurs when one takes [21

t] =t2. Such a rearrangement leads to a mixing of the
direct and crossed amplitudes and in some cases switches
the initial pions to non-Nambu-Goldstone states, making
a separate extraction of the two amplitudes diScult.

Let us now outline the procedure to obtain zz scatter-
ing lengths from the four-point function. The s-wave zz
scattering length ao is related to the energy level E of the
lightest two-pion state with vanishing momenta in a cubic
box of length L as [6]

2

effect, and (b) O(t ) terms in R (t ) are not correct. Thus
a proper extraction of scattering lengths requires that the
O(L ) contribution be small and that 8E be extracted
from the region linear in t of R(t).

For numerical calculation we used 160 quenched
configurations separated by 1000 pseudo-heat-bath
sweeps on a 12 x20 lattice at the gauge coupling con-
stant p=S.7 and the quark mass m~ =0.01 in lattice
units. The lattice size must be large enough so that we
can employ as weak a coupling as possible to avoid finite
lattice spacing eA'ects, yet it should not be too large so as
not to spoil a detection of a small energy shift of O(L );
our parameters are a reasonable compromise with the
present computing resource. In order to avoid contam-
ination from pions propagating backward in time we take
the Dirichlet boundary condition in time for quark propa-
gators. The periodic boundary condition is employed for
the spatial directions. A necessary condition for the ap-
plicability of the formula (3) is that the lattice size L is
su%ciently large so that finite-size eAects for the single
pion state are negligible. This point was checked, albeit
indirectly, with a calculation of pion mass which gave
m =0.290(3) for our L =12, to be compared with the
value 0.2876(7) for L =24 [7].

In Fig. 2 the individual ratios R (X=D, C, R, and V)
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with C„(t',t) =g„(Tr~G, (x, t)~ ) the pion two-point func-
tion. The amplitudes which project out the I=0 and 2
isospin eigenstates are given by
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R, ,(t) =R'(t)+ R'(t) 3JVfR'(t)+ —R'(t), —
2 2 0;4

R,=,(t) =R (t) —wfR'(t),
(s)
(6)

0.3

where the factor of IVf =4 is inserted to correct for the
four flavor degrees of freedom of the Kogut-Susskind fer-
mion.

We should note that the procedure above, when applied
to the Kogut-Susskind quark action, involves several sys-
tematic uncertainties arising from the nondegeneracy of
pions between the Nambu-Goldstone and other channels
at a finite lattice spacing that aAects both the relation be-
tween the ratio R(t) and the energy shift 8E and that be-
tween BE and scattering lengths (3). The point was dis-
cussed in Ref. [2] which showed that (a) the coefficient of
the O(L ) term in the relation (3) is invalidated by the
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FIG. 2. Amplitude ratios R (t) as defined in (4) for the dia-
grams in Fig. 1 as functions of t (a) Direct diagram shifted b.y
0.8 (circles) and vacuum diagram (triangles); (b) crossed (tri-
angles) and rectangular (circles) diagrams.
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FIG. 3. Errors of ratios R (t) as functions of r. Solid lines
are single exponential fits over 8 ~ t ~ 18.

FIG. 4. zn four-point function at zero momenta in the I=0
and 2 channels divided by the square of pion propagator. Solid
lines are linear fits for 4 ~ t ~ 9.

are plotted as functions of t. Errors are estimated by the
single elimination jack-knife procedure. The direct am-
plitude is quite Hat with the value close to unity, showing
that the interaction is weak in this channel. The crossed
amplitude, on the other hand, increases linearly, which
means a repulsion in the I=2 channel. These features
are known through the work of Ref. [2].

The amplitudes for the rectangular and vacuum dia-
grams represent the main result of the present work.
After an initial increase up to t-3 the rectangular am-
plitude exhibits a linear decrease up to t —10. This
means an attractive force between the two pions. Furth-
ermore the absolute value of the slope is quite similar to
that of the crossed amplitude. These results are what is

expected from current algebra and PCAC. It should be
mentioned that the close values of the rectangular and
crossed amplitudes for small t is not an accident; the
analytical expressions for the two amplitudes coincide at
t =0. Hence they should behave similarly until the
asymptotic two-pion state is reached. We also note that
the statistical quality of R (t) is good and similar to
those of R (r) and R (t) up to t —10. This demon-
strates the practical applicability of the method of wall
source without gauge fixing used here.

The vacuum amplitude is very small up to t —5-6
beyond which signals are lost. The small value of the am-
plitude is consistent with the Okubo-Zweig-Iizuka rule
and chiral perturbation theory which predicts the vanish-
ing of the amplitude in leading order. The rapid loss of
signal for large t can be understood from the analytical
argument [8] that errors for disconnected amplitudes
should be roughly independent of t, and hence grows ex-
ponentially as e " in the ratio R (r). The argument
also implies that the ratios for the direct and crossed dia-
grams have errors independent of t while that for the rec-
tangular diagram increases as e '. The magnitude of er-
rors is quantitatively consistent with these expectations as
shown in Fig. 3. Fitting the errors 6'R (t) by a single ex-
ponential 8R'"(t) =c~e" over 8 ~ t ~ 18 we find

TABLE I. zn scattering length in lattice units calculated on
a 123&20 lattice at P =5.7 and mq =0.01 in quenched QCD.
The energy shift bE& and the wave function factor Zz are also
given. m, =0.290(3) and f =0.132(3) are used to estimate the
current algebra value Eq. (7).

a.(S =0)
BEI=0
ZI =0

Lattice result

1.57(25)
—0.0291 (37)

0.807 (1 5)

Current algebra

i. i 6(5)

ap(1=2)

ZI =2

—0.301 (28)
0.0081 3 (82)
0.955 (5)

—0.331 (15)

p~=0.55, 0.31, 0.07, and 0.02 for %= V, R, C, and D, to
be compared with m =0.290(3). Thus while signals for
the vacuum amplitude are masked by an exponentially
growing error in our data, it is reasonable to suppose that
the vacuum amplitude remains small for large I. We
therefore neglect R (t) in the rest of the analysis.

In Fig. 4 we show the ratio Ri(r) projected onto the
I =0 and 2 isospin channels. To extract the energy shift
8FI for each channel we employ a linear form ZI(1—bFIt) with the fitting range chosen to be 4~ r ~ 9,
and ignore higher order terms. The fitted values of BFI
and the results for the s-wave scattering length ao in lat-
tice units obtained with (3) and m =0.290(3) are sum-
marized in Table I. The errors quoted for ao are statisti-
cal only. Possible sources of systematic errors are the un-
certainties in the O(L ) and higher term of (3), and
scaling violations due to a fairly large lattice spacing of
our simulation (a ' = 1 GeV at P=5.7 if determined
from the p meson mass) [9]. Concerning the former
eAect the O(L ) term contributes 10/o in the 1=0
channel, while it is negligibly small ( & 1%) for 1=2.

In Table I we also list the values predicted by current
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algebra and PCAC [4],

7m„ 2m
a.(I=0) = ap(I=2) =-

32tr f2 '
32tr f 2

(7)
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where we substituted the value of m above and the pion
decay constant f,=0 132(.3) extracted on the same set of
configurations. We observe that the simulation results
are consistent with (7) within 1-1.5 standard deviations,
which we find quite reasonable in view of the systematic
uncertainties discussed above. A result for ap(1=2) in

agreement with (7) was previously obtained [2] both for
Kogut-Susskind and Wilson quark actions (with the as-
sumption that the contribution of the direct diagram is
negligible for the former case).

The agreement with the current algebra result is not
unexpected since Ward identities for U(1) chiral symme-
try of the Kogut-Susskind action is suf]icient to show that
the leading chiral behavior holds also on the lattice under
some continuity assumptions [2,9]. Nonetheless we find
it particularly encouraging that the I =0 pion scattering
length which involves the essential difficulties of four-
point functions can be calculated with the technique of
wall sources without gauge fixing using only a modest
computing power (we used about 320 hours on HITAC
S820/80 with the peak speed of 2.4 GFLOPS for this
work). This raises a prospect that the method may be
successfully used to tackle other important processes
which have hitherto resisted attempts for quantitative cal-
culations, of which the prime examples include the

trtr decay and the disconnected two-point functions
of Aavor singlet mesons.

Numerical calculations for the present work were car-
ried out on HITAC S820/80 at KEK. One of us (A.U. )
thanks S. Sharpe, C. Bernard, and M. Golterman for use-
ful discussions on revising this manuscript while visiting
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