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String theory provides an example of the kind of apparent inconsistency that the principle of black
hole complementarity deals with. To a freely infalling observer a string falling through a black hole hor-
izon appears to be a Planck size object. To an outside observer the string and all the information it car-
ries begin to spread as the string approaches the horizon. In a time of order the “information retention

time” it fills the entire area of the horizon.

PACS numbers: 04.60.+n, 11.17.+y, 97.60.Lf

The paradox of information loss in black hole evapora-
tion [1] is essentially concerned with the localization of
information and how it is perceived by different ob-
servers. According to the principle of black hole com-
plementarity [2,3] no inconsistency follows from the fol-
lowing two assumptions.

(1) To a freely falling observer, matter falling toward a
black hole encounters nothing out of the ordinary upon
crossing the horizon. All quantum information contained
in the initial matter passes freely to the interior of the
black hole.

(2) To an observer outside the black hole, matter, upon
reaching the “stretched horizon™ [2], is disrupted and
emitted as thermalized radiation before crossing the hor-
izon. All quantum information contained in the initial
matter is found in the emitted radiation.

In this paper an example will be described in which in-
formation appears to be localized in extremely different
ways to infalling and outside observers. The example re-
lies on the peculiar zero-point fluctuations of fundamental
strings [4,5]. The result is closely related to the Regge
behavior of string scattering amplitudes.

Let us first recall a standard argument about why
string theory should not influence the discussion of black
holes and information loss. It is widely understood that
strings are extended objects and therefore may introduce
a bit of nonlocality. However, the argument goes, the ex-
tended objects have a size of order the Planck length. On
the other hand, the horizon of a massive black hole is
very flat on this scale so that strings can be effectively re-
placed by point particles. We shall see that this logic is
correct for the freely falling observer but completely in-
correct for external observers.

The size of strings.—One of the oldest known and
widely ignored properties of strings is that their physical
size is not well defined unless a “resolution time,” ¢, is
prescribed [4,5]. The time € is a smearing time over
which the internal motions of the string are averaged. If
the resolution time is measured in Planck units then the
spatial extent of the wave function of the string in Planck
units satisfies
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for e 1. Thus as the string is examined with better and
better time resolution it appears to slowly grow. For the
purposes of low energy physics, resolution times are al-
ways large and this phenomenon is not important.

Before deriving (1) let us recall that (1) is closely re-
lated to the well known Regge behavior of string scatter-
ing amplitudes. If a string of energy E > 1 collides with
a target at rest, the scattering amplitude for momentum
transfer g is given by [4]
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where ¢ is a constant. Fourier transforming to find the
amplitude as a function of impact parameter shows that
the radius of the scattering event grows like (InE) 2. If
we now assume (correctly) that the scattering event aver-
ages over a time of order ¢e=E ~! we recover (1). The
growth of strings with energy is their oldest known prop-
erty.

To derive (1) consider a string in the light cone frame.
The normal mode expansion for the transverse coordinate
of a point o is

X(o) =X£,m,+lzo X cos(lo) + X|sin(lo)] . 3)
>

Consider the mean square transverse distance between
the center of mass and the material point o

(Ix(6) = Xeml1?. 4)

If the string is in the ground state this reduces to
(X(0) = XemI) =2 5, (5)
7

which diverges for every point . The same divergence is
found in the mean square distance between any pair of
points o1, and o3.

If the observation of the string lasts a time ¢ in the
strings rest frame the contribution of modes with / > 1/¢
is averaged out. The result is

(IX(0) = Xom] Z)EER3~ln—i— . 6)

Another quantity which diverges as ¢— 0 is the total
length of the projection of the string on the transverse
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plane [5]. This is defined by
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do do ™

2n

L= 0 do
When the resolution time is accounted for one finds that
L increases like 1/¢. Because the mean radius R grows so
much slower than the total length L the string must trace
over the same region of transverse space many times. As
e— 0 the string becomes space filling. In [5] a particu-
larly graphic illustration of these facts was obtained by
Monte Carlo sampling of the probability functional of the
string. We refer the reader to that reference for pictures
of typical string configurations corresponding to decreas-
ing resolution time.

Here we simply remark that as e— 0 not only does the
string wave function spread but the information which
distinguishes different states of the string is also diffused
over the area ~ R2.

Now consider a string falling toward a black hole. An
observer falling with the string does measurements which
we shall suppose involve ordinary energies and time
scales. In other words the resolution time in the infalling
frame is not significantly smaller than the Planck time.
The string and all its information is localized in a trans-
verse size of order unity.

Now let us consider an observation of the string done
by a distant fiducial observer whose clocks register
Schwarzchild time. Suppose the measurement again
averages over a time ~1. But now because of the red-
shift factor, this corresponds to a time in the string frame
which is much smaller. It is easily seen that the resolu-
tion time in the string frame is of order

t
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Accordingly the transverse size of the string seen in such
a measurement is given by (6). This becomes

R*~t/M . 9)

In other words the distant observer sees the string, upon
passing through the stretched horizon, start to spread. In
fact the spreading appears to behave as if the string were
diffusing away from its original transverse location.
Eventually from the outside point of view the string
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will fill an area comparable to the whole horizon. This
occurs when R2~MZ%or t~M3.

It is interesting that the information retention time
defined in [3] is also of order M 3. This time is defined as
follows. Suppose at time ¢ =0 the stretched horizon is in
some pure state. At that time a particle in some state |i)
is absorbed at the stretched horizon. The resulting states
of the stretched horizon are initially orthogonal for
different |i). However, after some time the density ma-
trix of the stretched horizon loses memory of |#), the lost
information having been radiated in the Hawking radia-
tion. The time for this to occur is called the information
retention time. In [3] it is argued that this time is of or-
der M. This suggests the following speculative picture.
The information in a particle is absorbed at the stretched
horizon. According to an outside observer it begins to
spread as it sinks toward the event horizon. At a time
M3 it is spread over the entire horizon and can no longer
expand. By roughly that time the information must be
radiated away.

The same event is viewed by the infalling observer who
simply sees a microscopic string fall past the horizon with
nothing to disrupt it until it approaches the singularity.

The above description has ignored the splitting and
joining of strings which can take place near the horizon.
We hope to return to this point at a later time.
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