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Quantum Switches and Nonlocal Microwave Fields
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A scheme to realize an optical switch with quantum coherence between its "open" and "closed" states
is presented. It involves a single atom in a superposition of circular Rydberg states crossing a high Q
cavity. A combination of switches could be used to prepare a quantum superposition of coherent mi-
crowave field states located simultaneously in two cavities. Such nonclassical states and their decoher-
ence due to cavity dissipation could be studied by performing atom correlation experiments.

PACS numbers: 03.65.Bz, 32.80.—t, 42.50.%'m

Logical circuits are based on the classical assumption
that a gate must be either opened or closed. It is possible,
however, to envision optical "quantum switches" (QS)
which obey a different logic, being at the same time in a
superposition of "open" and "closed" states. The fields
controlled by these switches would be described as a su-
perposition of quantum states with macroscopically dis-
tinguishable features. These states are often referred as
"Schrodinger cats" in the literature [1,2]. In this Letter,
we describe a simple QS consisting of a single atom
prepared in a superposition of diff'erent energy states and
sent across a high Q cavity coupled to a classical radia-
tion source. This switch prepares a quantum superposi-
tion of the vacuum field with a classical coherent state. A
combination of two QS can be used to build nonlocal field
states occupying simultaneously two cavities. Nonlocal
quantum states generally involve single particles located
at two difTerent points (two slits of a Young apparatus),
or pairs of particles, as in the EPR experiment [3]. The
sharing of a single photon between two separate cavities
has also been discussed [4]. The field states considered
here are quite diAerent. They involve relatively large
numbers of photons making up coherent fields described
by classical parameters (amplitude and phase). Once
prepared, these states could be analyzed by sending a
second atom through the same QS combination and
detecting, in the transition probabilities of this atom, in-
terference effects sensitive to the field nonlocal coherence.

"Schrodinger cats" are very sensitive to dissipation and
are expected to turn rapidly into mere statistical mixtures
obeying classical logic [5,6]. Realizing QS devices is thus
related to the observation of long lived quantum mechani-
cal coherences between large physically separated subsys-
tems. We discuss the orders of magnitude of realistic ex-
periments with circular Rydberg atoms coupled to mi-
crowave superconducting resonators and conclude that
QS's could be practically operated with fields containing
tens of photons, over periods of time as long as 10 ms.

Let us discuss first a simple classical situation. Consid-
er a high Q cavity (resonant frequency ru, ), coupled to a
monochromatic source (frequency ro, ), with a detuning
6 =co, —n, much larger than the cavity bandwidth
ru, /Q = I/t, . The off-resonant source does not feed pho-

tons into the cavity. A nonabsorbing dielectric slab with

a refractive index is now inserted into the cavity during a
time t;, momentarily tuning source and cavity into reso-
nance. A classical coherent field is thus fed into the cavi-

ty with an amplitude proportional to t; (if r; ((t,). It sub-
sists during a time of the order of f,, after the slab remo-
val.

Similar experiments have been recently performed with

the dielectric slab being replaced by a microscopic atomic
sample [7]. The passage of the atom(s) through the cavi-

ty provided an index change large enough to tune the cav-
ity into resonance with a source and to control the field

flowing through the resonator. An atom has an interest-
ing feature lacking in a classical slab: it is a quantum ob-
ject which can be prepared in a superposition of different
states. Since the atomic index depends upon the state, it
is possible to realize a "medium" in a quantum superposi-
tion of states with different indices. We have already
proposed to use this effect in order to split a field present
in the cavity prior to the atom injection into two phase
components, realizing a superposition of classical fields
with dift'erent phases [6].

We consider now an initially empty cavity in which an
atom is injected in a superposition of two states e and g,
one of which, by its interaction with a third level, tunes
the cavity into resonance with the source S [Fig. 1(a)].
After exiting the device, it is detected with a state sensi-
tive counter (for example a set of two field ionization
detectors ionizing in turn levels e and g). The state ~e) is
coupled to a third, more excited state ~i) by a transition
at frequency coo =co, —8 [Fig. 1(b)]. The coupling of the
e i transition to the cavity mode is characterized by the
vacuum Rabi frequency A. We assume here that the
coupling is adiabatically switched on (off) as the atom
enters (exits) the cavity and remains constant in between.
Taking into account a more general dependence compli-
cates the algebra without changing the basic physics.
The coupling is slightly nonresonant and an atom in level

e inside the cavity pulls the mode frequency by D /6
(provided the field amplitude remains small enough; see
more detailed discussion below). Adjusting the detunings
so that 4 = 0 /6' ensures that an atom in level e tunes the
cavity into resonance with the source. The atom, non-
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FIG. l. (a) Sketch of a QS experiment. (b) Relevant atomic
level scheme (detunings 5 and b not to scale).

resonant with the field, then exits the cavity without un-
dergoing any transition (adiabatic approximation). No
frequency pulling occurs if the atom crosses the cavity in
level g (ro, very different from frequencies of all transi-
tions originating from this level). The cavity-source de-
tuning remains then h, and the field cannot build up. As-
sume now that an atom is injected in the cavity in the
(le)+ Ig))/W2 superposition. This is achieved by sending
the atom (initially in le)) through a zone Rt in front of
the cavity where a classical microwave pulse performs a
resonant zc/2 pulse on the e g transition. The system
now ends up in the entangled state: I+t) =(le;a)
+ Ig;0))/W2. The first and the second symbol in each ket
refer to the state of the atom and field, respectively. 0
represents the vacuum and a the complex amplitude of
the coherent field resonantly fed into the cavity during
the time t; the atom crosses it. The field is expressed in

the cavity rotating frame and thus a does not depend
upon time, as long as cavity relaxation is neglected.
Detecting the atom at cavity exit would yield two possible
outcomes, each leaving the field in one of two mutually
exclusive states. A last important ingredient is required
to turn this device into a QS. Before detection, the atom
crosses a second zone R2, identical to the first one, which
again mixes le) and lg). After R2, the system has
evolved into

Ief& = (la& ~ lo&)N+ (2)

with the sign + or —if the atom is detected in lg) or le),
respectively. N ~ =[2[1~ exp( —lal /2]J '~ is a normal-
ization factor reducing to J2 when Ial)) I. The final

I+2& =
2 (le;a&+ lg;a&+ Ig;0& —le;0&)

and a subsequent detection of the atom in le) or lg)
leaves now the field into one of the two coherent superpo-
sitions
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FIG. 2. Sketch of the double QS experiment preparing a
nonlocal field belonging simultaneously to two cavities.

field state thus appears as a quantum superposition of
cavity "filled" and "empty" states, clearly a "Schrodinger
cat" situation.

We discuss now how QS devices can be combined to-
gether to prepare nonlocal field states. Figure 2 shows a
simple scheme involving two identical cavities coupled to
the same source. An atom traverses successively both
cavities and x/2 pulses are applied before and after the
cavities (Rt and R3). A x pulse is applied in R2 between
the two cavities exchanging le) and lg) and the QS
"open" and "closed" states (le) lg);lg) —le)).
When the atom crosses the second cavity in level le), the
source injects the field ae ' ', Axt being the phase shift
between the cavity mode and the source during the atom
time of flight t between the two resonators. This not
essential phase can be compensated by inserting a de-
phaser D between S and the second cavity. We assume in
the following that this compensation is performed.

A simple analysis shows that, after atomic detection,
the field is given by

(3)

(+ and —signs when atom is found in e or g, respective-
ly). The first and second symbol in each ket now refer
to the state of the field in the first and second cavity,
respectively. N'+. is a normalization equal to [2[1
+ exp( —lal )]i' . Equation (3) describes a quantum
coherence between two identical field states which diAer
by their location in separate cavities.

This coherence can be read out by sending a second
atom through the apparatus after a delay T and measur-
ing the probability of detecting it in le) or lg) [8]. The
second atom crosses the system under the same conditions
as the first. This atom operates as a second QS, adding,
when in its open state, the field ae ' into the system
and dephasing an already present field by ht;. Each cavi-
ty ends up either empty or containing one of the three
fields a, ae ', or a(e ' '+e ' ). Before detection
of the second atom, the state of the system has become

I +atom 2+field& =, [[la(e '"'+e '");0&+e'"
I
« "',a&] (lg& —le&)

2Nw

—[Ia;ae ' )+e' 'Io;a(e ' '+e ' ))](lg&+Ie))j. (4)
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not appreciably relax during the opening time of the QS
(and during the atom fiight time across the apparatus,
which is of the same order of magnitude). The second
condition is required for the atomic index to be field-
independent and to ensure the purely dispersive character
of the atom-field interaction. The last condition (6) final-

ly ensures that the "closed" state of the QS leaves the
cavity essentially empty. The ratio of the amplitudes fed
into the cavity when the QS is open and closed is indeed
equal to ht; (fields proportional to t; and I/A, respective-
ly). Equations (6) combined with the condition A=A /8
lead to two important limitations for a:

(7)

Equations (7) show that it is critical to achieve very large
atom-field couplings 0 and to be able to make observa-
tions on very long time scales, with very weakly damped
field and atomic systems. Circular Rydberg atoms [9]
coupled to superconducting microwave cavities [6] are
the most promising systems for these experiments. Cou-
plings 0 of the order of 10 s ' together with cavity
damping times in the 10 ' s range make it possible to
achieve At, =10 and to realize a QS controlling fields
made of large absolute photon numbers. Circular states
with principal quantum number n =50 and maximum an-
gular momentum l =n —

1 are required because they have
long radiative lifetimes (t„d=310 s for n =50) and
can survive in the e/g superposition during the time the
atom interacts with the apparatus. Assuming that e, i,
and g are circular levels with n =50, 51, and 49 respec-
tively, the frequency top/2tr is 51.1 6Hz (wavelength 6
mm) and the cavity tuned at cu, =cop has a size of the or-
der of 1 cm. An atom traveling at 10 m/s crosses the cav-
ity in t; =10 s and reaches the state selective field ion-
ization detector in a couple of milliseconds, a time much
shorter than t„d To sum. marize, conditions (6) and (7)
are fulfilled for photon numbers up to ~a~ =30 with
1/t, =10 s ', 7tt/t; =2X 10 s ', 6=10 s ', 0 =10
s ', and 8=10 s '. The curve in Fig. 3(b) corresponds
to this choice of parameters.

Two experimental conditions must furthermore be met.
First, the velocity of both atoms should be the same with
an accuracy of = 1%, so that the two successive QS intro-
duce the same amplitude field in the cavities, a condition
required for the interference peaks to be observable.
Laser cooling techniques can be used to slow down the
atoms and to select their velocity with this precision, prior
to their preparation in the circular state e. The atom
counters must also have a high detection eSciency, since
any "unread" atom will decrease the quantum coherence.

We have described a practical quantum switch able to

control the flow of relatively large classical fields in one
or two cavities, making it possible to realize nonlocal mi-
crowave field quantum states. The study of these states
by double atom count measurements would permit the
observation of quantum decoherence in a simple text
book situation, and the monitoring "in real time" of the
system evolution from quantum to classical behavior.
Such an experiment could also be related to a crucial is-
sue in measurement theory [10]. The field in the double
cavity can indeed be considered as a "macroscopic
pointer" whose position measures the internal microscop-
ic state of the atom crossing the system. The decoherence
of the "observable plus pointer" states in an essential
stage of the measurement, which obviously occurs on the
same time scale as the relaxation of the macroscopic
pointer coherence studied in this proposed experiment.
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