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Disordered Bosons: Critical Phenomena and Evidence
for New Low Energy Excitations

Miloje Makivic, Nandini Trivedi, and Salman Ullah
'Department of Physics, The Ohio State University, Columbus, Ohio gMIO

Materials Science Division, Building 828, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, Illinois 60$8g

James Franca Institute, 66/0 South Ellis Avenue, Chicago, Illinois 60697
(Received 21 January 1993)

We study the T = 0 critical properties of the superfluid-insulator transition in 2D hard core
Bose systems with disorder. Using quantum Monte Carlo simulations and finite size scaling on
64x64 lattices we find the dynamical exponent z = 0.5 + 0.1 and the correlation length exponent
v = 2.2 + 0.2. At the transition, the system is metallic with a conductivity cr = (1.2 + 0.2)(e') /h
and a compressibility K g O. These conclusions differ from the existing scaling theory as well as
from simulations on simplified models argued to be in the same universality class. Our results are
suggestive of nenes low lying collective excitations (modified from usual phonons) in the disordered
system.

PACS numbers: 74.20.Mn

The localization problem for interacting bosons, often
called the "dirty boson" problem, has been an active field
in recent years beginning with the seminal work of Fisher
and co-workers [1). This problem is very challenging be-
cause it contains elements of both disorder and inter-
actions between the particles. In addition, unlike the
fermion problem, the system cannot be perturbed about
the zero interaction limit, which is singular in the Bose
case. The interplay between interaction and disorder has
been studied using quantum Monte Carlo [2—4] and other
techniques [5]. Besides the theoretical interest, the dirty
boson problem in 2D is relevant to a number of exper-
iments. Among them are 4He adsorbed in porous me-
dia [6], universal aspects of the superconductor-insulator
transition in disordered films [7,8], vortices in type II su-
perconductors [9], and Josephson junction arrays [10].

The experiments on disordered superconducting films,
in particular, have attracted much attention, partly be-
cause it appears that between a superconducting phase
at low disorder (or low magnetic field [11]) and an insu-
lating phase at high disorder (or high magnetic field), the
conductivity of bosons with charge e* approaches a finite
value at T = 0 of order o., (e')2/h:—oq, the quantum
of conductance. Fisher, Grinstein, and Girvin [12] pro-
posed that in 2D the system is metallic at the transition
with a universal conductivity (analogous to the universal
jump in the superfIuid density at the Kosterlitz-Thouless-
Berezinskii transition). What then is the correct univer-
sality class for the transition? It was argued that under
certain conditions [8,13], the superconductor-insulator
transition is well described by interacting bosons mov-
ing in a random potential.

In previous theoretical work a scaling theory [1] was
postulated for the disordered superfluid that contained
only phonon modes as the relevant low energy excita-
tions. One of the primary conclusions of the scaling the-
ory was that the dynamical exponent z, characterizing
the asymmetry between the spatial and temporal cor-

relations, equals d, the spatial dimension. This result
was later confirmed by simulations of the quantum rotor
model with disorder [14] which was argued to be in the
same universality class as the disordered boson model.
Our main conclusions are (a) unlike the pure system, in
the presence of disorder the boson model and the quan-
tum rotor model are in different universality classes (see
Fig. 1); and more significantly, (b) we find evidence for
new low energy excitations in the disordered superfIuid
not captured by the efFective action in Ref. [1].

Our results for the disordered hard core boson model
are as follows: (i) We have established the existence of
a localized (also called "Bose-glass" ) phase for the bo-
son model for disorder larger than a critical disorder U„
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FIG. 1. fL vs disorder V for two temperatures such that
L~, = 8/t and L~2 ——4/t and linear lengths Li = 28 and
L2 ——20 chosen such that the second argument of the scaling
function in Eq. (2), L/L ' with z = 2, is fixed. The value
of z = 2, suggested by the scaling theory, does not yield an
intersection of the curves, indicating the absence of a super-
fluid-insulator transition for this value of z.
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where V, is nonzero. Such a result was known in 1D; how-

ever, it was not clear previously, given the considerably
weaker localizing effects in 2D, whether quantum fluctu-
ations would destabilize a localized phase, i.e. , push V, to
infinity. (ii) The exponents characterizing the transition
are z = 0.5 + 0.05 and v = 2.2 + 0.2. The dynamical
exponent z is defined by ( (~, where ( is the corre-
lation "length" in the imaginary time direction and ( is

the boson order-parameter correlation length. The corre-
lation length exponent v is given by ( b, where b is
the deviation from the critical point. (iii) The compress-
ibility at the transition is finite. (iv) The conductivity at
the transition is o', = (1.2+0.2)aq. These results should
be compared with the quantum rotor model that includes
only the phase degrees of freedom. For short-range repul-
sive interactions it is found in Refs. [14,15] that z~„= 2,
v~„= 1.0+ 0.1, and o' = (0.14+ 0.03)og. Prom the

scaling theory [1], the compressibility v ti ~" 'l, where
d is the dimensionality of the system. Since we find z ( d,
this would imply that x should vanish at the transition.
We, however, find that the compressibility is nonzero at
the transition. We therefore conclude that the existing
scaling theory fails to include all the relevant degrees of
freedom in the presence of disorder.

We consider a model of hard core bosons on a 2D
square lattice N = L x L, described by the Hamiltonian
H given by

H = ) (aa~ + Hc) + ) (V, —p)n, . (1)' (.,.I

Here a, (a, ) is a boson annihilation (creation) operator at
a site i and (i, j) are nearest neighbor sites. The random
potential is modeled by site energies V, chosen from a
uniform distribution [

—V, V] and the chemical potential
p, is chosen to fix the density. We shall study the tran-
sition from a superfluid to an insulating phase driven by
increasing disorder.

The algorithm consists of dividing the "imaginary
time" interval P = 1/T = I, in the partition func-

tion Z = Tr(e ~~ )M into M time slices of width
Ar = I /M and inserting complete sets of states (in
the occupation number basis) between the adjacent time
slices. This leads to a world line algorithm which is par-
allelized by distributing regions of the lattice among the
nodes of a concurrent processor [16]. We impose periodic
boundary conditions in the spatial and temporal direc-
tions. The results are obtained on an L2 = 64 x 64 lattice
with up to M = 48, significantly larger than those used
in previous simulations. We average over 32 to 2048 re-
alizations of the random potential.

In order to distinguish between the superfluid and lo-
calized phases, we calculate the stiffness T, which is a
measure of the rigidity of the many-body wave function
to a twist in the boundary conditions and is defined as
T = (W2 + W~). Here W„= 1/L gt 'i [r,„(0)—r,„(P)]
is the winding number [2,17] along p, = x or y, Nb is the

(2)

In Fig. 2 we plot T(L)L' vs V for various lattice sizes
at a fixed T = 0.25k. We have tried various values of
z and find that we get a very distinct intersection for
z = 0.5 6 0.1 (we use z = 0.5 in Fig. 2). We caution
that the scaling analysis is difficult because we have to
determine two exponents. Nevertheless, based on the
analysis in Figs. 1 and 2 we rule out z = 2, which was
assumed in simulations of the quantum rotor model [14].
Linearizing Eq. (3) around the critical point V, = 2.5t,

average number of bosons, and r, (r) is the position of
the 8th boson at time w. We define a reduced stiffness by
T = T/2ppt, where p = Nb/L = 1/2 in the simulations.
From a single simulation in the zero winding number sec-
tor on a 64 x 64 lattice, we obtain the stiffness on lattice
sizes ranging from 4 x 4 to 32 x 32 by measuring the
winding numbers on various sublattices (which are not
constrained to W = 0).

Near the superfiuid-insulator transition (at a critical
disorder V = V, and T = 0), the spatial correlation
length diverges as ( 6 and the correlation time di-

verges as ( (' b' ', where 6 =~ V —V,
~

/V, . On
a finite space-time lattice (L x L ), the diverging cor-
relation lengths are cut off by the system size. Near the
transition, we make the following finite size scaling ansatz
for the stiifness T(L, L, 6) = (L2 "/L )E [L/(, L /( ]

By redefining variables, it can be shown that in d = 2

T(I,L, ti) = g(bL ', L/L, ~')
7

To begin, let us assume that z = 2 as suggested by the
scaling theory. In this case for the size of the simula-
tions we have studied I' ) I and the divergence of
the correlation length is limited by L rather than by
L. In the spatial direction this implies that the correla-

tions cannot grow beyond I '. In Fig. 1 we plot YL
vs V for two values of L and correspondingly for two
different L such that the second argument L/vL of g
is fixed. A signature of a superfluid to insulator transi-
tion with z = 2 should show up as an intersection of the
two curves indicating the size independence at the critical
point. The curves fail to show any sign of an intersection.
The possibility of an intersection of the curves improves
considerably if z is reduced below unity and provides the
first hint that z ( 1.

In order to extract the value of z we perform an equiva-
lent finite size scaling analysis in the regime z ( 1 by not-
ing that now I provides the cutoff for the diverging cor-
relation length and I )L'. The scaling function ~ can
be written as P(x, y) = yx 'f(x, x'/y), where x = L/(,
y = L /(, and f(xi, x2) is analytic at (0, 0). We ap-
proach the finite size scaling regime, given by the limit
x —+ 0, y ~ 0, by keeping the argument x'/y && 1 (or
equivalently L )) L'). Keeping only the zeroth order
term in the Taylor expansion of f(xi, xq) around x2 = 0,
the dependence on L drops out, and we obtain

T(L, h)L' = g(bLi )' (3)
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FIG. 2. From Eq. (3) we obtain the dynamical ex-
ponent z by plotting T(L)L' vs the disorder U for
L = (12, 16, 20, 24, 28). The value of z used is 0.5 and
T = 0.25t. The curves cross at V = 2.53t which identifies
the critical disorder because at this point T(L)L' = g(0) be-
comes independent of the lattice size.

FIG. 3. Scaled plot of p, (L)I ' vs L'~ 6for dif'Ferent lattice
sizes and for two temperatures T = 0.25t and T = 0.125t.
Here z = 0.5 and v = 2.2 for both temperatures; V, = 2.5t at
T = 0.25t and V, = 5.2t at T = 0.125t. The collapse of the
data on a single scaling curve shows that we are in the critical
regime for quantum fluctuations.

we get TL' = g(0) + g'(0)L ~"6 This equation allows
us to extract v = 2.2 + 0.2, which satisfies the bound
of v ) 2/d = 1 in d = 2 [18]. Thus the exponent for
the stifFness, T h~, where ( = (d —2+ z)v = 1.
In order to ascertain that the temperature for the data
in Fig. 2 is low enough to probe the quantum fluctua-
tions, we have repeated the simulations at T = 0.125t
and find that though V, changes to 5.2t, the exponents
at both temperatures agree within error and the data
from both temperatures can be collapsed onto a single
scaling function g(x) as shown in Fig. 3. We therefore
believe that the transition is governed by the T = 0 fixed
point. The change in the critical disorder with temper-
ature is given by the relation Ti~' ~V, (T) —V, (0)~,
where the crossover exponent zv 1.1. Using a linear
extrapolation we deduce that V, (0) 8.

Based on a Lagrangian describing the long wavelength
phonon excitations in the superfluid phase, Fisher and
co-workers [1] obtained the compressibility r h' ("
Using our value of z, one would conclude that the com-
pressibility vanishes at the transition. We directly com-
pute the compressibility from the density fluctuations
r = (p ) —(p) and find that it is indeed finite at the
transition, contrary to the scaling conjecture of Ref. [1].
Also the bound z ) 1 derived on the assumption of long
wavelength phonon excitations is violated.

The conductivity at the transition can be shown [19]
to be given by o, = o~2(L /1V)(j(P/2) j(0)), where j(w)
is the current operator. Using the value of (j(P/2) j(0))
at V = V, from the 64 x 64 lattice data, we find that
o, = (1.2+ 0.2)crz. This is in good agreement with the
data on disordered superconducting films [7,8].

Our simulation results of a finite rc, at the transition
in conjunction with a dynamical exponent z ( 2 sug-

gests that the low lying excitations are modified from
usual phonons in the presence of disorder. Such a conjec-
ture is further supported by the low temperature specific
heat obtained deep within the superfluid phase, which is
found to deviate from the expected C„T behavior for
phonons in 2D [20]. The anomalous specific heat behav-
ior could arise from difFusive density fluctuation modes
in the disordered system [21). Another possible source
are remnant localized states in the superfluid [22].

Our results have bearing for the pinning of vortices
(equivalent to the boson world lines) by extended-twin
boundary or columnar defects (equivalent to the time-
independent disorder potential) in disordered type II su-
perconductors in a magnetic field [9]. The Bose-glass
phase can be interpreted as a localized vortex phase [11]
below a finite temperature T = T* for the disordered su-
perconductor in which the linear resistivity pl. is indeed
zero. Following the scaling ansatz in Ref. [23] we obtain
pl, ~T —T*~ ('~ '1 and at T = T* the electric field
scales with the current density as E J( +'~)/( +'),
where z~ is a new exponent describing the time scale
to relax fluctuations at the transition. Using pL,

~T —T*~ and E J from the data [24] and z = 1/2
from our simulations, we obtain zo = 3.5 and v = 2.17,
where the value of v is consistent with our results. For
z = 2, the corresponding values are [25] zLi = 8 and
v = 1.08.

In conclusion, we have shown that with increasing
amounts of disorder, a superfIuid gets localized in 2D.
We have obtained the exponents characterizing the tran-
sition that have provided a window into the nature of
the excitations in the disordered system, Our primary
result is that, unlike previously believed, an efFective ac-
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tion written in terms of the phase of the order parameter
and containing only linearly dispersing phonon modes is
in a dt'fferent universality class from the disordered boson
model. This has led us to propose that the coupling be-
tween the amplitude and phase degrees of freedom could
lead to new low lying excitations in the disordered system
which are also important at the transition.
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