
VOLUME 71, NUMBER 2 P H YSICAL REVIEW LETTERS 12 JULY 1993

Universal Anharmonic Vibrator Description of Nuclei and Critical Nuclear Phase Transitions
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A new analysis of yrast energies in collective medium and heavy even-even nuclei shows two startling
results. First, although these nuclei exhibit widely varying structure [the ratio E(4~+)/E(2~+) ranges
from —2.0 to —3.33], they show a universal behavior of an anharrnonic vibrator with nearly constant
anharmonicity in which the multiphonon interactions are independent of the internal structure of the vi-
bration. Second, the transition from anharmonic vibrator to rotor can be described by critical phase
transitional behavior. These results suggest a reexamination of very basic ideas of structural evolution
in finite-body nuclear systems.

PACS numbers: 21.10.Re, 21.10.Dr, 21.60.Ev

Although the lowest levels of even-even nuclei are
well-known signatures of structure, there has been little
study of their energy relationships over the entire nuclear
chart. Of course, it is well known that E(2~+) and
E (4t+ ) decrease through the course of a vibrator

rotor shape transition. Also, the ratio R4g2
=E(4&+)/E(2~+) increases from —1.2-1.6 near doubly
magic nuclei to -2.0-2.2 in vibrational nuclei, 2.5-3.0
in transitional species, and —3.33 in well-deformed sym-
metric rotor nuclei. Surprisingly, however, the global re-
lationships of E(4t+) to E(2~+) have never been probed
nor have their remarkable implications been interpreted.

It is the purpose of this Letter to do so and to show
that rather startling conclusions result which may alter
our understanding of the structure of most nuclei, of how
nuclei pass through transitional regions, and of the
universality of the observed phenomenology.

Figure 1 presents three plots of E(4t+) against E(2t+).
The plots include all even-even nuclei with Z ~ 38 with
collective R4/2 values between the near-harmonic value
2.05 and the near-rotor value of 3.15. No nuclei, magic
or otherwise, are excluded. There are three striking and
heretofore unrecognized features of Fig. l. (i) In each
plot, the data are highly correlated along a straight line;
(ii) these lines are parallel to the vibrator limit, with a
slope of —2.0; and (iii) the plots for each region have
very similar offsets from the vibrator limit. Points (i) and
(ii) suggest that these data satisfy the simple formula

E (4 )+ ) =aE (2 )+ ) +e4,

in which a —2.0. Linear least-squares fits give the follow-
ing: for Z =38-50, a = 1.96+ 0.04, e4 =195~ 24 keV;
for Z =52-82, a=2.00~0.04, e4=175 ~24 keV for N
=52-82 and a =2.00 ~ 0.04, c4 =148 ~ 14 keV for
N =84-126; for Z & 82, a =2.08 ~ 0.05, e4 =67 ~ 16
keV.

Point (iii) means that e4 is nearly unchanged from re-
gion to region (except for the actinides). This is vividly

highlighted by combining the data for all nuclei from
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FIG. 1. Plots of E(4~+) and E(2&+) for three mass regions for
the nuclei with R4/t2 values between 2.05 and 3.15. Data are
from Ref. [I].

Z =38 to 82 into a single p/ot as in Fig. 2. The data still
are highly correlated, along a line parallel to the harmon-
ic vibrator line, despite the fact that they cover such a
wide mass range and include vibrational regions as
dispersed Zr, Cd, and Hg, and transitional nuclei in re-
gions as diferent as the near N =Z region around
A =80, the extremely rapid 8 =100 region near Z =38,
the gradual A —130 region, the 2 =150 vibrator rotor
region, and the y-soft nuclei near A =130 and 190. An
unexpected mass independence of E(2t+) is implicit: For
example, ' Mo, ' Nd, and ' Pt all have the same
E(2)+) values (299+ 3 keV) and the same R4I2 values
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FIG. 2. Combination of data, such as shown in Fig. 1, for
nuclei from Z 38-82, inclusive. Extension of the plot to lower
or higher Z does not materially alter the results. The harmonic
vibrator (R4t2 2.00) and rotor (R4t2=3.33) limits are shown
as well as a linear least-squares fit to the data.

FIG. 3. Similar to Fig. 2 except for E(6~+). The harmonic
vibrator (R6t2=3.00) and the rotor (R6t2=7.00) limits are
shown as well as the predicted function E(6~+) =3.00E(2~+)
+3, where =156 keV. The elliptically encircled points are
anomalous values oA' the main trend, which have either
R4t2&2. 16 or N =80.

(2.50 0.01). Apparently, it is only in rotational nuclei
that yrast energies in medium and heavy mass nuclei ap-
proach an A st3 dependence. A linear least-squares fit
of Eq. (1) to Fig. 2 gives a=2.02+ 0.02 and e4=156
~10 keV: That is, within errors, all the nuclei, from
Z =38-82, with 2.05 ~ R4t2~ 3.15, can be described by
the expression

E(4,+) =2E(2,+)+s, , (2)

which is that of an anharmonic vibrator where s4=156
keV is the deviation of the two-phonon 4~+ energy from
the harmonic value. Although we stress the average be-
havior of the overall trend in Fig. 2, we also note that
each individual isotopic or isotonic series also follows a
linear path with slope close to 2.0. The only notable devi-
ations in Fig. 2 from Eq. (2) are two nuclei, Sr and

Hg, lying well above the line, a small group of N =88
nuclei slightly below the line at E(2~+) —350 keV, and a
few nuclei with high 2~+ energies, most of which have two
valence nucleons of one type. Interestingly, though, the
overall scatter is statistical: The lo deviation from the
line is 5% and the moments of the distribution are con-
sistent with a Gaussian distribution. We conclude that
nearly all these nonrotational nuclei can be described by
a single anharmonic vibrator equation ~ith constant
anharmonicity e4. %'e pursue below the meaning and im-
plications of this startling result.

This an harmonic vibrator interpretation seems so
bizarre that one wonders if its success in describing the
systematic trend for so many nuclei with constant param-
eters might be accidental. This question can be tested by
asking if other yrast levels can likewise be explained.
Fortunately, this is easy since there are relations [2] be-
tween the anharmonicities of two-phonon and higher-
phonon vibrational states. The three-phonon 6+ energy

depends only on E(4~+) since it is made by coupling a
one-phonon 2+ excitation with the 4+ two-phonon state.
Since the three phonons are indistinguishable, we have
E(6~+) =3E(2~+)+3'. We test this in Fig. 3. The trend
of the 6+ data is linear in E(2~+), in excellent agreement
with the above prediction using the same e4 as in Eq. (2).
The only exceptions are a few 6+ levels in nuclei with

large E(2~+) that either have N =80 or near-harmonic vi-

brator R4y2 values. These anomalous levels deserve fur-
ther study but do not impact the main point that an
anharmonic vibrator with constant anharmonicity de-
scribes the low-spin yrast levels of nearly all nonrotation-
al medium and heavy nuclei. The 8&+ energies for the
same nuclei show somewhat larger Auctuations but are in

good agreement with the anharmonic vibrator prediction
E(8i+) =4E(2i+)+6'.

We next note an important aspect of Eq. (2). While
the slope is constant, that is, AE(4~+) =2.0AE(2~+), the
ratio R4t2= E(4~+)/E(2~+) v—aries from —2 to nearly
3.33, implying that the underlying structure is changing.
This compatibility of constant slope and constant anhar-
monicity with changing R4g2 results from the interplay of
the two terms in Eq. (2), such that as E(2~+) drops, the
e4 contribution to E(4~+) becomes relatively larger, rais-
ing the 4~+/2&+ energy ratio, as seen by rewriting Eq. (2)
as

R4t2 =2.0+ 156/E (2(+ ) .

The apparent dichotomy between changing nuclear struc-
ture but a universal anharmonic vibrator description with
constant anharmonicity actually points toward a deep un-

derlying implication. To see this we note that the energy
relations for yrast levels just discussed are particular
cases of a very general result for any anharrnonic vibrator
with up to two-body interactions, namely,
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E(J)=nE(2~')+ «,
2

(4)

where n =J/2 is the phonon number. This result is even
more general than the specific form of Eq. (4) indicates:
Equation (4) gives the energy of the aligned coupling of
any n ph-onon state E(n), if E(2~+) is replaced by the
one-phonon energy and « is the anharmonicity of the
two-phonon level. Equation (4) holds independent of the
internal structure of the phonon. Thus, Eq. (4) describes,
for example, the yrast energies of y-soft nuclei [Wilets-
Jean or O(6) model] (R4/z=2. 50) or even of a sym-
metric rotor (R4/z=3. 33), and it can be written in the
form [3] E(J)=aJ+bJ(J —2) or that of the Ejiri rela-
tion [4l E(J)=aJ+bJ(J+1). The remarkable aspect of
Eq. (4) is therefore not at all its success in individual
nuclei —it describes a variety of structures —but rather
the completely unexpected constancy of «over such a
vast span of nuclei comprising a wide variety of mean
field structures. This constancy implies that while the
internal quadrupole phonon structure (the 21+ state) may
be that appropriate to a spherical vibrator or a y-soft nu-

cleus, or to some transitional type or even a near rotor,
nevertheless, independent of this phonon structure, the
an harmonicity —that is, the two-body phonon-phonon
interaction —somehow remains constant. In the comple-
mentary Ejiri formulation, the constancy of s4 corre-
sponds to a (also heretofore unrecognized) constancy of
the coefficient b and hence to a constancy of the rotation-
al perturbation to the changing vibrational energy.

A final point is that these results imply much more
than the linearity of the ratio RJg2 with R4y2 observed in

Mallmann plots [5]. A simple manipulation of Eq. (4)
shows the ratio plot effectively eliminates «and, there-
fore, a linear Mallmann plot automatically results from
any two-parameter energy-angular momentum relation.
Moreover, even the specific linear trend seen in the
empirical Mallmann plot of R6/2, namely R6/2-3R4g2
—3, only implies that E(J) is proportional to J and/orJ: It says nothing further, nor does it imply a constancy
of «(or of b in the Ejiri relation).

We now proceed further by considering the extension
of the phenomenology of Figs. 1 and 2 into the rotational
region (R4/2& 3.15) which will lead to additional unex-
pected and-remarkable results. Clearly, Eq. (2) cannot
continue to apply for rotational nuclei since, as E(2~+)
drops, at some point E(2~+) becomes less than e4/1. 33
and then Eq. (2) give E(4~+) & 3.33E(2~+) which would

cross the rotor limit. This is illustrated in the inset to
Fig. 4, which focuses on the Z=50-82, N=82-126 re-
gion (other regions behave similarly). As the data ap-
proach the rotor limit, within a very narrow range of
E(2~+) values the trend curves downward away from the
extension of Eq. (2), asymptotically merging into the ro-
tor line labeled 3.33. Equation (2), however, can still de-
scribe the data provided it is modified to include an addi-
tive term which is a function of E(2~+). We thus rewrite
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FIG. 4. Inset: data for nuclei with E(2~+) & 330 keV isolat-
ing the behavior of near-rotational nuclei. The curve is a least-
squares fit. Main plot: the derivative dE(4~+)//dE(2~+) against
E(2~+) obtained from the fits in Figs. 2 and 4 (inset) with Eqs.
(2) and (6). Note that other functional forms for the last term
in Eq. (5) also give very sharp increases in the region
E(2)+)-e4.

Eq. (2) as

E(4)+) =2.0E(2)+ )+«/1 —a [E,(2)+) —E(2)+)] +'}

[E(2;)& E,(2,+)l, (5)

where E, (2~+) marks the start of the transition region.
The last term introduces an E(2~+) dependence to the
anharmonicity «. Taking «=148 keV (for this mass re-
gion), a least-squares fit gives a =0.0007 keV
X, =0.49, and E, (2~+) =145 keV.

Since Fig. 4 (inset) —and Eq. (5)—exhibit a changing
slope of E(4~+) against E(2~+), it is interesting to explic-
itly consider the derivative dE(4~+)/dE(2~+) which has
limiting values of 2.0 for the vibrator and 3.33 for the ro-
tor. Note that these derivatives are not the same as R4/z.
Decades of experience with nuclear structure would sug-
gest that dE(4~+)/dE(2~+) exhibits a curved and gradual
trajectory against E (2&+ ) between the vibrator and rotor
fixed points. In contrast, the actual result, from Eq. (5),
is

dE(4)+)/dE(2)+) =2+ C[E,(2(+) —E(2)+)], (6)

where C=«a(A, + I ) =0.15 keV for E(2~+) & E, (2~+)
(and 0 otherwise), which reveals the totally different be-
havior shown in the figure. Of course, the fit to the data
perforce reflects only the average behavior: Strings of
particular nuclides (e.g., isotopes and isotones) may well

have somewhat diverse, fluctuating, irregular behavior.
Nevertheless, the curve shows that, on average, the
empirical derivative dE(4~+)/dE(2~+) cuts horizontally
across the plot for nearly all 2~+ energies, and then sud-

denly turns nearly vertically upward towards 3.33 in a
very narrow range of E(2~+) energies (—130-145 keV).
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This is a direct consequence of the constancy of e4 in Eq.
(2) for most nuclei and the deviation from Eq. (2) given

by Eq. (5) for near-rotor nuclei.
The surprisingly sharp kink in Fig. 4 reveals a behavior

typical of true phase transitions in many-body systems
[6]. Indeed, Eq. (6) has exactly the form of a critical
phase transition characterized by a critical point, by an
order parameter that is zero above the critical point and
finite below it, and by a power law with a critical ex-
ponent k. [An example of an order parameter is the net
magnetization of a ferromagnet above and below the crit-
ical temperature (Curie point). ] Here, E, (2~+) is the
critical point, and the nuclear order parameter would be

O(4/2) =dE (4)+ )—/dE (2)+ ) —2 . (7)

The value R4gz=3. 0 thus takes on special significance as
universally marking the start of the phase transition
which ensues for nuclei with 3.00 & R4/z & 3.33.

Normally, transitional regions have been associated
with a shift from a potential centered at p =0 to one with
lower symmetry centered at finite P. Our analysis sug-
gests a reexamination of phase transitional behavior as
the average and rms deformations associated with zero
point motion change as the nuclear potential evolves and
it raises the question of how critical phase transitional be-
havior can develop in the (valence nucleon dominated)
few-body nuclear environment.

Finally, since these 2i+ and 4i+ data have long been
known, one might ask why our approach yields such a
new interpretation. The reason is simply that, first, we
plot against E(2~+) rather than, say, N, Z, or A and,
second, we plot E(4~+) instead of R4t2 against E(2~+).
Because of the constant in Eqs. (1) and (2), R4t2 changes
smoothly against E(2&+), obscuring the linearity in the
anharmonic region and masking the phase transitional
behavior. Similarly, double ratio plots of the Mallmann
type cannot yield a unique relation between energy and

The intriguing result found in all mass regions, that the
onset in the anharmonic vibrator region is related to the
critical point, namely, that E, (2~ )—e4, is natural in

view of the requirement deduced earlier that rotational
behavior must set in for E(2~ ) —e4/1. 33, and it gives an
interesting general rule that is familiar in a qualitative
way but which here is obtained specifically from the fits.
It follows from Eq. (2) and the result E, (2~+) =e4 that, at
the critical point,

E,(4i+) =2E, (2i+)+E, (2i+) =3E,(2i+) .

angular momentum: In fact, they automatically elimi-
nate any information on e4 and therefore are insensitive
to the phonon anharmonicity. However, when E(4~+) is
directly plotted against E(2~+), the constant slope reveals
the constancy of vibrational anharmonicity, along with
the sudden change occurring in the phase transitional re-
gion.

To summarize, for all collective nuclei from Z =38 to
82 (and nearly as well from ' C to the actinides), 4&+ en-
ergies follow a universal trend against E(2~+). The data
lie on the same straight line with slope 2.0. These nuclei,
of widely varying structure (2.05 ~ R4tz ~ 3.15), can be
described by a generic anharmonic vibrator equation with
nearly constant anharmonicity, independent of internal
phonon structure and nearly independent of mass region:
E(4~+) =2.0E(2~+)+e4 with e4 —150 keV (e4 —70 keV
in the actinides). Second, the derivative, dE(4~ )/
dE(2~ ) —2.0 until the data, in effect, hit the rotor limit:
it then rapidly increases to 3.33. Its variations can be de-
scribed by critical phase transitional behavior [see Eq.
(6)]. In a given region, the phase transition ensues at
E(2~+) —e4 (or R4t2 —3.0) and rotational behavior sets in
at E(2~+)—e4/1. 33: These may be useful for predictions
in new regions. These results suggest the need to reexam-
ine the nature and evolution of nuclear structure, the
universality of phonon and rotation-vibration interactions,
and the nature of phase transitional behavior in finite-
body nuclear systems.
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