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Amorphous Solid State of Vulcanized Macromolecules: A Variational Approach
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We present a microscopic theory of the transition to and properties of the amorphous solid state
of a system of vulcanized (i.e. , randomly crosslinked) macromolecules. Our approach invokes a
variational hypothesis for the random static density Buctuations characterizing this solid state. The
variational parameter is the inverse monomer localization length, which is zero in the liquid state and
increases continuously as the mean number of crosslinks exceeds a critical value. The emergent solid
is a homogeneous isotropic elastic medium, whose elastic moduli we compute near the transition.

PACS numbers: 64.70.Dv, 61.41.+e, 82.35.+t
Introduction. Vulcanization, i.e. , the introduction of

a sufhcient number of permanent crosslinks at random
into a melt or solution of macromolecules, causes the
equilibrium state of the system to undergo a thermody-
namic phase transition from a liquid state to an amor-
phous solid state the so-called rubbery state. In the liq-
uid state, the macromolecules will, given suHicient time,
wander throughout the container, and the system will
respond viscously to an external static shear stress. By
contrast, in the solid state at least a finite fraction of
the macromolecules will spontaneously become localized
in space, their monomers retaining forever a statistical
association with a certain mean location. Because of the
random nature of the crosslinks, this solid will be an
amorphous one. It will respond rigidly to an external
static shear stress by undergoing a static shear deforma-
tion. Typical instantaneous microscopic configurations
would not distinguish this amorphous solid state from
the liquid state, although the correlations found in long
temporal sequences of configurations would.

The purpose of this Letter is to develop a statistical
mechanical theory of the equilibrium state of a system
of randomly crosslinked macromolecules. %'e focus, in
particular, on the so-called vulcanization transition, and
on the elastic properties of the resulting rubbery state.
The theory addresses both solutions of macromolecules,
for which collapse of the network is prevented by the
presence of a good solvent, and melts.

Our investigation is based on the model of randomly
crosslinked macromolecules pioneered by Edwards and
co-workers [1, 2]. We adopt the spirit of Ref. [3], and
construct a Ginzburg-Landau free energy in terms of the
local static density fluctuations, which result from the
random localization of the macromolecules and emerge
at the transition to mark the onset of solidification. At
the heart of the present approach is a variational hypoth-
esis for the local static density fluctuations: we assume
that in the solid state the monomers are localized at ran-
dom spatial positions about which they exhibit Gaussian
fluctuations characterized by a single length scale ( that
is finite, whereas in the liquid state ( is infinite. The
free energy is computed as a function of (, and the phys-
ical value of ( is selected so as to make the free energy

stationary.
The principal results of this Letter are as follows.

First, we find a continuous transition from the liquid
state, in which ( = 0, to the solid state, in which
( grows continuously from zero, as the mean num-
ber of crosslinks [M] is increased beyond a critical value
M, . For 0 & ([M] —M, )/M, « 1 we find (
([M]/M, —1) . Second, we construct the free-energy
cost associated with static elastic distortions of the equi-
libriurn state, and show that the liquid is a compressible
fluid, with zero shear modulus, whereas the solid is a
homogeneous isotropic elastic medium, compressible and
resistant to shear. We find that the shear modulus S be-
haves as S ( ([M]/M, —1) near the transition,
whereas the bulk modulus acquires a singular contribu-
tion equal to 2/d times the shear modulus (in d dimen-
sions

ModeL and order parameter. —We consider a system of
N identical macromolecules of arclength L and persis-
tence length l, moving in a d-dimensional (hyper)-cubic
volume V. The macromolecules are labeled by the inde~
i = 1, . . . , N, and the location in space of the monomer an
arclength distance s from a certain end of chain i is given
by the (d-dimensional) vector c,(s) (with 0 & s & L). In
the absence of interactions the rms end-to-end distance
of a single macromolecule is vtlL. We consider the ther-
modynamic limit: N, V ~ oo with N/V and ~lL fixed
and finite. To ease the notation, we introduce dimension-
less vectors, volumes, and arc lengths: c —+ c/(lL/d) r/2,

V ~ V/(lL/d) /, and s —+ s/L. Also, we adopt units of
energy such that k~T = 1.

We model the system using the Edwards Hamiltonian
[4—6] which, in the units we have adopted, is

1). ' dc, (s)

ds ds' b(c, (s) —c,'(s')),
0 0

where A2 characterizes the effect of the (repulsive) ex-
cluded-volume interaction between rnonomers and h(c)
is the d-dimensional Dirac delta function. We suppose
that permanent crosslinks are introduced between a ran-
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dom number M of randomly selected pairs of monomers,
i.e. , monomer 8, on chain i, is crosslinked to monomer
s', on chain i', (with e = 1, . . . , M). These constraints,
which enforce certain pairs of monomers to occupy com-
mon spatial locations, do not break translational symme-
try, and play the role of quenched random variables. The
partition function Z((i„s„i'„s',), i) for the system of
macromolecules constrained by M random crosslinks, rel-
ative to the partition function of the uncrosslinked sys-
tern, is then given by

Z((i„s,;i'„s',), r) =

The product of delta functions enforces the constraints
imposed by the crosslinks, and the angle brackets denote
normalized averaging with respect to the Edwards Hamil-
tonian: ( )+ = I Dce 'H

/ j'Dce H, where 17c in-
dicates functional integration over all configurations of
the macrornolecules.

To model a realistic vulcanization process, in which
crosslinks are introduced in the liquid state, we assume
that all pairs of monomers that happen (at some par-
ticular instant) to be nearby are, with a certain prob-
ability, crosslinked. The statistics of such a crosslink-

ing process reflect correlations in the underlying liquid
state. An appropriate crosslink distribution 7 can then
be constructed, following the elegant strategy of Deam
and Edwards [1], by choosing 'PM((i„s„i'„s',), r) to
be proportional to

M M

h'(c, (s,) —c,' (s', )) . (2)
e=1 1

We allow the number of crosslinks to fluctuate in a man-
ner controlled by the parameter p . All that we shall
need to know about p is that the mean number of
crosslinks per macromolecule [M)/N is a smooth, mono-
tonically increasing function of p that can, in principle,
be determined using the distribution P.

To calculate the average of the free energy over the
crosslink distribution we use the replica technique [3, 7].
Given the crosslink distribution 7, we adopt the unusual
strategy of simultaneously computing the partition func-
tion and the crosslink distribution [1, 2]. The crosslink
distribution can then be regarded as being generated by
an additional replica, so that the disorder-averaged free
energy per macromolecule is given by f —= lim„p f„,
where Nnf„—= ([Z"]—1)/n = 1Z„+i —Zr)/Zr. Av-
eraging over the disorder is denoted by [ ], and

(3)

(4)

2257

(p, V
Z„+i = exp

~ ) ds ds' b(c, (s) —c™(s') )i2N, p n+1

Here, n-fold replicated variables (cr, . . . , c ) have been introduced, along with one additional replica, cP, which
generates the crosslink distribution. It will be convenient to collect together (n + 1)-fold replicated d-dimensional
vectors, such as c~, by introducing the notation c—:{cP,. . . , c"). Introducing an appropriate order-parameter field
0 we can formulate the problem in terms of a Ginzburg-Landau free energy per macromolecule

2 2 i R'

nf„(A) = ) Ak —In expi ) dse '"'('l Ak+ c.c.
[

The angle brackets ( )„+, denote averaging with re-
[spect to the (n+1)-fold replicated Wiener measure. The monomer-monomer interaction strongly suppresses den-

expectation value (0), taken with the Boltzmann weight sity fluctuations and, in particular, stabilizes the system

exp( —Nnf„(A)), is related to the disorder average of the against crystallization or collapse.
static density fluctuations: Varictionat hypothesis. —We analyze the free energy,

N Eq. (3), at the saddle-point level by invoking a varia-
(fIk) = —) ds((exp[ik c,(s)])). tional hypothesis for the saddle-point solution A. To

'=1 motivate the form of our variational hypothesis, let us
When at least two of the (n+ 1) comPonent vectors suppose that the amorphous solid state has the follow-
in k are nonzero then (~Ik) is the order Parameter ing characteristic properties: typical rnonomers are per-
that distinguishes between liquid and amorphous solid manentjy localized at random noncrystalline locations
states, detecting the emergence of random static density a, (s), and exhibit Gaussian fluctuations around these
fluctuations. For example, assuming replica symmetry, locations parametrized by the localization length (, so
(Apk kp p) = N 'P,. j d[s(expi kc, (s))(exp —ik that (e'& "('l) = e'" '('le ~" ~ In the liquid state (
c, (s))], and is nonzero in the amorphous solid state: it is infinite, whereas in the solid state g remains finite.
is the analog of the Edwards-Anderson order parameter &n an amorphous solid with these properties Ap g&

for spin glasses [3]. When all but one of the component is given by 6p i,i+ „+k exp( —-(2 P i ]k ~2), in which
vectors in k is zero then 0k is the density. The excluded- the Kronecker delta function arises from the absence
volume interaction together with the crosslinking con- of crystallinity, and indicates that the solid state re-
straints give rise to a contribution to the free energy from mains macroscopically translationally invariant, despite
the density. We have not included this [as the overbar in the spontaneous breaking of symmetry that has oc-
Eq. (3) indicates] because we assume that the repulsive curred microscopically through the localization of the
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monomer s.
Guided by the form of 0 obtained above, it is natural

to hypothesize the variational form [8]
—Ck/20„- = hoko+. . . k e

where k = P" 0]k ], and to regard ( as a variational
parameter with respect to which the free energy f((s)
should be made stationary. Close to the transition (i.e. ,

for ( )) 1), and to within a p-dependent constant, f((s)
is given by

&), ((u )) = e'"'" Ak ((0)) . Given the translational
symmetry of the free energy, we expect low-energy exci-
tations, i.e. , phonons, for almost uniform displacernents
of the monomers.

To calculate the elastic free energy [10] within the vari-
ational approach we consider nonuniform displacements
of the thermodynamic degrees of freedom: ca (s)
c, (s) +u(c, (s)) for rr; = 1, . . . , n. (Recall that the rr, = 0
replica is present to generate the crosslink distribution. )
Under this transformation

where h(z) = e * —(1 —x). The computation of terms
of higher order in ( ~ is straightforward but tedious.

We now demand that in the equilibrium state f(( ) be
stationary with respect to (2, so that Bf/B(( ) = 0, i.e. ,

(6)

Ai-, ~ Ak ——exp i ) k u(B/Bip ) O~
p=k

We have constructed the elastic free energy 6F(uj—:
~(f(0) —f(0H to second order in u. For displacement
fields u(r) varying on length scales much longer than the
localization length ( we find that the elastic free energy,
with physical units restored, is given by

For p ( p, = 2h(p~) = 1.59, i.e. , for a sufficiently small
mean number of crosslinks per macromolecule, there is
only one non-negative solution for (, viz. , the liquid
state ( = oo. As p is increased beyond p„so that the
mean number of crosslinks is increased beyond a certain
critical value, the ( = oo solution continues to exist but
is no longer stable. However, a second non-negative solu-
tion appears, continuously bifurcating from the (2 = oo
solution and marking a continuous phase transition to
the amorphous solid state. For 0 ( (p, —p, ,) (( 1 this
solution is given by ( = 6 (1 —p, ) (p —p,,). Thus
the variational parameter ( i is zero in the liquid state
and grows continuously from zero beyond the transition
to the solid state.

The formation of such a state, with monomers local-
ized on semimicroscopic length scales, is only compatible
with crosslink distributions that respect the connectiv-
ity of the macromolecules and the d-dimensional random
network. Distributions that omit correlations between
crosslinks [3] do not lead to the consistent picture pre-
sented in this paper, and instead lead to localization on
length scales comparable with Vr~" (see Ref. [9]).

The variational ansatz can be generalized to account
for an arbitrary distribution of localization lengths. For
an exponential distribution we have found that neither p,
nor the singular p dependence of ( are changed. Work
considering unrestricted distributions is in progress.

Elastic free energy. The free energy, Eq. (3), is invari-
ant under replica-dependent, spatially uniform transla-
tions of the monomers, i.e. , c, (s) 6 c, (s) + u does
not change f„Translationa. l invariance is broken lo-
cally by the appearance of microscopic static density Huc-
tuations, i.e. , for a given monomer (exp[ik c,(s)])
0, whereas macroscopic quantities remain homogeneous,
e.g. , K i Q,. f ds (exp[ik c,(s)]) = 0. Hence, there is
a manifold of degenerate solutions for the order param-
eter generated by these spatially uniform translations:

66"(u)= dr — (Su) +S~u' — 6u )—'"rr 1 aa ~ ~ ab 1 ab cc
2 ( d

Here, u b—:z (B ub+ Bbu ) is the (linearized) strain
field and Cartesian superscripts (over which summation
is implied) range from 1 to d. To lowest nontrivial order
in ( 2 the bulk modulus B and shear modulus S are
given by

NkI3T 1 2 „2 2

.x' l —1 2l'+ 2l + 3G2: =e
l! / 180l=2

(Note that there is always an additional nonsingular @-
dependent contribution to the bulk modulus, associated
with the uncrosslinked liquid, which is typically large. )
Hence, we And that above the vulcanization transition
randomly crosslinked macromolecules form a homoge-
neous isotropic elastic solid. The shear modulus of this
solid vanishes continuously, as the transition to the liq-
uid state is approached, in qualitative agreement with
experiment [11—13]. We find S (p2 —p2)i, with t = 2,
independent of d, in agreement with the naive mean-Field
estimate, which can be obtained using the Josephson re-
lation [14]. A Ginzburg-type estimate [15] suggests that
in d = 3 and for dense systems of long macromolecules
(i.e. , I /l )) 1) mean-field results should be observed over
a wide range of crosslink densities, failing only in a small
interval ]p, —p, ]/p~ ( (L/l) ~s near the transition; this
has been confirmed numerically [16].

Theoretical approaches were stimulated by the analogy
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between vulcanization and percolation [17]. This sug-
gests that the conductivity and shear modulus exponents
are the same, and are given by t = 1+ (d —2)v (where v
is the correlation length exponent for percolation). This
suggestion has not been confirmed by studies of random
elastic networks [18] which, in general, yield larger ex-
ponents for the shear modulus. These network models
are mechanical, and only consider geometrical fluctua-
tions. In our system, by contrast, a large number of mi-
crostates is always compatible with the quenched random
constraints. These fluctuations of the annealed variables
must be treated by statistical mechanics: thus the rigid-
ity of rubber is mainly an issue of entropy.

The shear modulus exponent t has been studied ex-
perimentally in the context of gelation (rather than vul-
canization) with conflicting results: Ref. [11] gives t = 2,
and Ref. [12] gives t = 3. The origin of this discrepancy
is not currently understood.

We note that for displacement fields u(r) varying on
length scales much smaller than the localization length g
but still much larger than the radius of gyration ~lL we
recover the elastic properties of the liquid state. It would
be interesting to study this crossover in detail.

The structure of the elastic free energy, Eq. (8), is
quite general, and does not depend on the speciBc de-
tails of our variational hypothesis for the order param-
eter, although the values of the elastic moduli do. A
full solution to the problem of computing the elastic re-
sponse would require: (i) the solution of the saddle-point
equation; (ii) the construction of the eifective elastic free
energy; and (iii) the analysis of nonlinear interactions
between fluctuations. As we have been unable to solve
the saddle-point equation we have, instead of step (i),
adopted our variational approach. We cannot exclude the
possibility that our hypothesis leads to an overestimate of
the critical mean number of crosslinks. Furthermore, the
possibility of replica symmetry breaking should also be
considered. We have accomplished step (ii) to the Gaus-
sian level, within our variational framework; constructing
the nonlinear terms is straightforward, and would provide
the starting point for studying how the nonlinear inter-
actions affect the singular behavior of the shear modulus.

Conclusions. —Our intention has been to develop a
consistent picture of the transition to and nature of the
rubbery (i.e. , amorphous solid) state. With this aim in
mind, we have examined the statistical mechanics of a
system of randomly crosslinked macromolecules using a
variational mean-Beld theory. We have found that the
system undergoes a continuous transition from a liq-
uid state to an equilibrium amorphous solid state. In
this state, monomers are localized around randomly lo-
cated mean positions: the solid remains translationally
invariant at the macroscopic level, and there is no crys-
talline order. The monomers exhibit Gaussian fluctua-
tions around their mean positions with a characteristic
localization length that diverges at the transition to the

liquid state. We have demonstrated that this solid is,
macroscopically, a homogeneous isotropic elastic solid,
and have calculated its linear elastic moduli, showing, in
particular, that the shear modulus vanishes continuously
at the transition.
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