VOLUME 71, NUMBER 14

PHYSICAL REVIEW LETTERS

4 OCTOBER 1993

Critical Anomaly of Complex Shear Modulus in Polymer Solutions: Viscoelastic
Suppression of Order Parameter Fluctuation due to Dynamic Asymmetry
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The critical anomaly of the complex shear modulus has been studied for ideal polymer solutions
in the frequency range from 1 Hz to 400 Hz. The logarithmic critical divergence is observed for
both the real and imaginary parts of the complex shear modulus. It is found that the strength
of the critical anomaly decreases with an increase in the degree of polymerization N, while the
noncritical background increases with N, indicating the significance of the viscoelastic effect. The
critical anomaly is likely suppressed by the viscoelastic effects through the spontaneous coupling
between the stress field and the order parameter fluctuation.

PACS numbers: 64.60.Ht, 05.70.Jk, 61.25.Hq

Dynamic critical phenomena have been extensively
studied in the past three decades from both the experi-
mental and the theoretical viewpoints, and the concepts
of dynamic scaling and dynamic universality have been
established [1]. The behavior has been classified in terms
of the types of Hamiltonian, order parameter, and ki-
netic effects [1,2]. Binary polymer mixtures and poly-
mer/liquid mixtures have so far been believed to belong
to the same dynamic universality class as classical fluids
(the so-called model H) [2]. It is well known that en-
tangled polymer solutions behave like elastic gels when
the characteristic deformation time is shorter than the
rheological time, while they behave like viscous fluids for
slower deformation.” Thus we would like to raise the fol-
lowing question: How is the order parameter fluctuation
affected by the viscoelastic properties or slow molecular
dynamics? All the previous theories assume that ele-
mentary molecular dynamics is much faster than critical
dynamics, or diffusion is a limiting process. This assump-
tion is true for dynamically symmetric miztures; how-
ever, it could be violated by the slow molecular dynam-
ics of a component for dynamically asymmetric miztures.
In polymer solutions and polymer blends, viscoelasticity
likely plays an important role when the critical dynamics
is comparable to or faster than the characteristic rheo-
logical time. In this Letter we demonstrate that the slow
polymer dynamics strongly affects the critical fluctuation
of the order parameter and causes the suppression of the
critical anomaly in the complex shear modulus of a poly-
mer solution.

The systems studied were critical mixtures of monodis-
perse polystyrene (PS) and diethyl malonate (DEM). The
weight-average molecular weight (M,,) of PS, the poly-
dispersity ratio (M,,/M,, M,: number-average molec-
ular weight), and the critical polymer composition (¢.)
and temperature (T;) of the mixture are listed in Table L.
Since the densities of the components are matched, there
is little effect of gravity [3]. The 6 point (tricritical point
[4]) of the mixture is estimated as 50 + 5 °C by extrapo-
lating T, for N = oo from all the existing data of ¢, and
T for various N [3,5,6] including our data. The large er-
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ror bar of 8 is likely due to the significant impurity effect
of water to T, for this mixture [6].

The complex shear modulus of a mixture was measured
by an instrument developed by us [7]. A sample was
sandwiched by two piezoelectric transducers through two
parallel glass plates having optically flat surfaces. The
complex mechanical transfer function Z*(f) was mea-
sured as a function of an excitation frequency f. The
spacing between the two glass plates (i.e., sample thick-
ness) d was set to 100 um. The frequency spectrum of
the complex shear modulus G*(f) should be proportional
to Z*(f) when the decay length of the shear wave is
much longer than d. We used a multifrequency excita-
tion method to obtain a whole spectrum from 1 Hz to
400 Hz within a short time. The excitation signal used
was Y, Asin(2m fot) (A denotes amplitude, f, = 4n+1,
n = 0-100). The temperature was controlled within
+0.03 K by circulating the temperature-controlled wa-
ter inside the cell. The details of the instrument will
be described elsewhere [8]. In the experiment, the tem-
perature of the sample having a critical composition was
scanned from far above T, to T,. Since the phase diagram
of the polymer solution can be scaled by t. = (T, — 6)/6
and ¢ in the plane of ¢ = (T' — 0)/6 and ¢ (polymer
composition) into the universal phase diagram [9], the
experimental paths for our four critical mixtures can be
drawn as a single line (¢/¢. = 1) in the scaled t — ¢
phase diagram. Thus the paths are identical irrespective
of N and the critical behavior could be directly compared
among the critical mixtures having different V.

Figures 1(a) and 1(b) show the temperature depen-
dences of the real and imaginary parts of G*(f), respec-
tively, for PS-2/DEM (7.0 wt % PS). We can clearly see

TABLE I. Physical characteristics of polymer solutions

PS M, (10°)  M,/M, ¢.(wt%PS) T. (°C)
PS1 1.02 1.02 95 18
PS-2 1.80 1.06 8.7 15.8
PS-3 3.55 1.02 7.0 21.0
PS-4 126 1.05 4.0 28.8
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the increases in both real and imaginary parts with ap-
proaching T,. In this mixture G”(f) [the real part of
G*(f)]x f? and G"(f) [the imaginary part of G*(f)]
« f, although there are slight deviations from the rela-
tions. This indicates that the characteristic rheological
time 7 is likely shorter than 1 ms. Figures 1(c) and 1(d)
show the temperature dependences of the real and imag-
inary parts of G*(f), respectively, for PS-4/DEM (4.0
wt % PS). Here no critical anomaly is observed. We can
clearly see the deviation of G'(f) and G”(f) from the
f? and f dependences, respectively. This relaxational
behavior suggests that 7; is longer than 1 ms for this
mixture. Figures 2(a) and 2(b) summarize the depen-
dences of G'(f) and G”(f) on temperature at f = 150
Hz, respectively, for the four different molecular weights.
This frequency is close to the upper frequency limit satis-
fying G”(f) o< f. The striking feature is that the critical
anomaly in both G'(f) and G”(f) decreases with an in-
crease in the degree of polymerization N. In particular,
for the mixture of PS-4/DEM, we cannot see any critical
anomaly even at the critical composition in the measure-
ment temperature range. It should also be noted that
the background parts of G*(f) steeply increase with an
increase in N. This suggests stronger viscoelastic effects
for larger N. Figure 3 indicates the N dependence of
the critical anomaly of G*(f), AG*(f). In the figure,
AT =T —T,. Although the critical anomaly can be well
described by the logarithmic divergence [10], the strength
of the anomaly decreases with an increase in N beyond
the prediction of conventional theories for critical binary
fluids [10,11].

Here we discuss the physical mechanism for the de-
crease in the critical amplitude with N. The character-
istics of long chainlike molecules can be summarized by
the large molecular size (spatial characteristics) and the
slow dynamics (dynamic characteristics). First we con-
sider the former effect. Critical fluctuation is suppressed
for large N by the constraints that (i) the correlation
length should be comparable to the chain size at the 8
point and (ii) § — T is proportional to N~*/2. Thus the
static correlation length & has the following dependence

FIG. 1. Temperature depen-
dence of complex shear modu-
lus spectra for PS-2/DEM [(a)
and (b)] and for PS-4/DEM [(c)
and (d)]. Arrows indicate T, of
each mixture.
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on N [4]: € = Ry[(6 —T.)/(T — T.)]Y = RgN~¥/2¢” and
o = RgN"’/Z. Here ¢ = AT/T., v is the critical expo-
nent of £ (v ~ 0.63), and R, is the radius of gyration.
However, this static suppression is much weaker than the
following dynamic one: It does not cause the change in
the amplitude of the logarithmic divergence since the crit-
ical anomaly of viscosity is proportional to In £ according
to the conventional theories [10]. The temperature dis-
tance between T, and 6 is also important from another
aspect; i.e., revealing how to understand the competi-
tion between critical and tricritical effects [4,12-14]. This
might be significant for a critical polymer solution in the
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FIG. 2. Temperature dependence of complex shear mod-
ulus at 150 Hz for the four mixtures. Filled symbols are
for the measured values and open symbols are for the back-
ground. Circles: PS-1/DEM; diamonds: PS-2/DEM; squares:
PS-3/DEM; and triangles: PS-4/DEM. Arrows 1-4 indicate
T.’s for PS-1-4/DEM, respectively.
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FIG. 3. Temperature dependence of the anomalous part
of G” (AG") scaled by the background part Gj. Note
that AG” /Gy ~ An/ms. Circles: PS-1/DEM; diamonds:
PS-2/DEM; squares: PS-3/DEM,; and triangles: PS-4/DEM.
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limit of large IV; however, in our case tricritical effects
likely play few roles in critical dynamics of concentration
fluctuation as in usual cases [1,3,6]. It should be noted
that the above static effect likely causes the drastic sup-
pression of the critical anomaly of the bulk viscosity since
its critical amplitude is proportional to & 3 [15].

Next we discuss the dynamic effect. The striking dy-
namic effect comes from the viscoelastic effect, which re-
flects the topological characteristics of chains. The crit-
ical composition ¢, ~ N~1/2 where chains are closely
packed is located in the crossover region from the di-
lute (Rouse) regime to the semidilute (reptation) regime
(see, e.g., Fig. 3 in Ref. [12]). The quantitative treat-
ment of viscosity in this regime has never been estab-
lished [4], but the rheological behavior at ¢, can be es-
timated at least qualitatively as follows. The charac-
teristic rheological time 7, at ¢ = ¢, is related to the
viscosity 1 as 7 < ¢.7tkgT/N. On the other hand, the
characteristic decay time of concentration fluctuation free
from the viscoelastic effect is estimated by 7¢ = £¢2/D;
(D¢ = kpT/6mn¢). By using the relation ¢, ~ N~1/2
¢ /Tt ~ (N'/2€)~3%. When 7¢ is comparable to or shorter
than 7, (for large N or large €), the concentration fluc-
tuation could be severely suppressed by the elastic effect
[16]. This is a kind of relaxational phenomenon between
the two internal frequencies (m¢ ! and 7,71 characterizing
the system. In the following, we consider this problem
on a more quantitative basis.

The coupling between stress field and diffusion was first
noticed and studied by Brochard and de Gennes [17] for
a polymer solution far from the critical point. Recently
the problem has been extensively studied by many re-
searchers in connection with shear-induced phase sepa-
ration from the theoretical viewpoints [18-20]. Very re-
cently Doi and Onuki [20] have derived the following gen-
eral diffusion equations including the dynamic coupling
between stress and composition, on the basis of the two
fluid model:

% =—v-(¢v)+v.[M(V%—vﬁéﬁ>] ,
(1)
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1-9
Vp — Vg = —

¢
Ov (n) 2
P05 =V [~(r+p) I + o'"™] +noVv. ®3)

V-l -o™], (2)

Here v,(r,t) and vs(r,t) are the average velocities of
polymer and solvent at point » and time ¢, and v =
¢vp + (1 — $)vs. ¢(r,t) is the composition of polymer.
po is the average density and p is the pressure. ( stands
for the friction constant per unit volume and is of order
N3 2 where 7, is the solvent viscosity and & is the so-
called blob size. The essential point is that the stress in
entangled polymer systems is supported by chains; thus
a gradient in the stress causes a net force on the chains
as well as a gradient in the osmotic pressure 7 and leads
to the motion of the chains relative to the solvent [see
Eq. (2)]. Near a critical point, the free energy F' is given
in the Ginzburg-Landau form as follows:

F= /dr [—-’2:¢>2 + %¢>4 + %(w)?} .

In the linear response regime o () is generally given by

t
) _ ot — ¢y |9V O 2o e
o& _/_oodt Gt t)[axi t a5 v,,)au}.

The G(t) is the stress relaxation function that is related
to the complex shear viscosity n*(w) by

(W) = ——G;(f) _ /O ¥ dtem G ().

Equations (1)—(3) naturally coincide with the equations
for hydrodynamic systems if we put V - o(®) = 0. Here
G(t), or (™ is strongly dependent on ¢ and N, although
it is not explicitly written in Eqs. (1)-(3). This fact
should play a crucial role in unstable states [21]. How-
ever, it is probably not so important near equilibrium,
which simplifies the problem of a stable state.
The complex shear modulus G*(w) is given by [22]
* (o o]
gw _ / dt / dr €= (04, () )72y (0, 0)).
0

w

For a usual fluid system the mechanical stress o, can
be calculated from the expression for the osmotic pres-
sure tensor coming from the critical fluctuation. In the
viscoelastic system, however, it should be expressed as
follows:

n
Opy = Mgy — ar(m).

Tay = K (96/92)(96/0y).

The critical anomaly likely originated from the osmotic
pressure tensor m;,. The network stress ag(pz) causes the
noncritical background in a direct way, while the diagonal
parts of o™ cause the suppression of critical fluctuation

in an indirect way. By using the decoupling approxima-
tion and the relation

(6(r,)8(0,0)) = (21)=° [ P*ges(q,0)
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we get the following expression for the critical part of
G*(w) [10,11]:

AG*(w) _ 8K* /qigy * —iwt 6 2
w 7T2kBT< qt >a/o dt/dqe ¢ S(@ %
(4)
where ( ), means the angular average and g, and g, are
the z and y components of wave number vector q, re-
spectively. Thus the complex shear modulus can be cal-
culated from S(q,t). Here it should be noted that K is
independent of N.

Although the general expression for S(q,w) =
[§° dte=™tS(q,t) is given in Ref. [20], it is not straight-
forward to analytically calculate G*(w) from S(q,w).
Thus here we focus our attention on the simplest cases:
(i) the limit of 'y — 0, where I'y is the usual ther-
mal decay rate without the viscoelastic effect and I’y =
kpTq?(1 + ¢%€2)Y/2/16n¢ [10] and (ii) 7:T; > 1. The
functional forms of S(g,t) are given by [20]

S(2,) ~ xq expl=Tat/(1+ €2.0%)] [case(d],  (5)
S(@,t) ~ Xa [exp<—rqt> TS (— })] fcase(i)]
o ’ 6)

where x, is the static correlation function of the
Ornstein-Zernike type.

The critical anomalies in viscosity for cases (i) and (ii)
are roughly estimated from Eq. (4) by using Eq. (5) or
(6), respectively, as follows:

2
Ao (1= 322 ) tn(act) - fense(], ™)

2
- (1_95%;75) In(ge€) [case(i)).  (8)

Here g, is the cutoff wave number, 7, is the noncritical
normal viscosity, and &,. is the viscoelastic length defined
as €yve ~ &(n/ns)'/2. Since the critical anomaly in the
viscosity is given by In(g.£) for simple liquid mixtures
[10,11,22], the prefactors in Egs. (7) and (8) can be re-
garded as the modifications coming from the viscoelastic
effect. Since £, ~ N, &€ ~ NU=9)/2 and n/7, ~ N=3/2,
the critical part of the viscosity, An, is expected to de-
crease with N for the same values of AT or € for both
cases (i) and (ii). This result [especially on case (ii)] is
at least qualitatively consistent with Fig. 3. For the
very critical regime we should see the critical divergence
even for large N since the correction (—5¢2,/2¢2) be-
comes negligible in the limit of £ > &,.. Detailed the-
oretical calculation of An*(w) in the whole temperature
and frequency regime is a future problem and now under
investigation.

In summary, it has been found that critical concentra-
tion fluctuation in polymer solutions could be suppressed
by the viscoelastic effect. The kinetic effects caused by
the coupling between the order parameter and the stress
fields should be considered. It is known that in fluid mix-
tures the hydrodynamic interaction significantly affects

the critical fluctuation through the coupling between the
velocity and the concentration fields. Similarly to this
hydrodynamic effect, the viscoelastic effect never appears
in the Hamiltonian, while it appears only in the kinetic
equations. The difference between these two effects likely
comes from the fact that there is an intrinsic characteris-
tic time scale for the viscoelastic effect, but no such time
scale for the hydrodynamic effect. The suppression ef-
fect increases with an increase in the degree of dynamic
asymmetry. It should be stressed that only when there is
a strong asymmetry in molecular dynamics, critical fluc-
tuation does not always become the slowest process in
the system. Polymer solutions and polymer blends are
expected to belong to a new dynamic universality class
based on Egs. (1)-(3) [21]. Similar phenomena are ex-
pected to exist for any system having an asymmetry in
elementary molecular dynamics. The possible candidates
for dynamic asymmetry are (1) slow dynamics due to the
internal degree of freedom in complex fluids and (2) slow
dynamics near the glass transition.
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