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Models of Fractal Cracks
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We present theoretical ideas which allow us to understand part of the scaling laws recently observed
on branched cracks. We argue that some features are common to all critical branched structures, which

barely survive when propagating. These ideas are illustrated by the directed percolation problem, which
serves as an excellent toy model. Finally, we propose a Langevin equation for unbranched cracks in

three dimensions, which naturally leads to self-aSne structures.

PACS numbers: 62.20.Mk, 05.40.+j, 81.40.Np

There has been a recent upsurge of activity in the sta-
tistical description of fracture surfaces. The motivation
was triggered by the interesting observation [1] that these
surfaces are scale invariant, critical objects in the sense
that the local height z scales as the in-plane displacement
r as z ccr~, where g(1 is the roughness exponent: These
surfaces are called self-a%ne fractals [2]—planar sur-
faces would correspond to /=1. Recent experiments
spurred further interest: It is not only the "fractal" re-
gion which is surprisingly large (over three decades in

some cases: 0.5 pm to 0.5 mm [31), but also the rough-
ness exponent g which seems to be quite independent of
the material and fracture mode [4]. Experiments on
aluminum alloys, bakelite, steels, concrete, etc. , using
very diA'erent techniques, all yield /=0. 8 [1,3,5-7]. This
"universal ' behavior is also found in numerical simula-
tions of random fuse models [8,9], leading to roughness
exponents independent of the microscopic disorder.
These results strongly suggest that the model describing
crack formation and propagation must exhibit scaling
properties at large length scales, much as is found in non-
linear diAusion equations describing, e.g. , growing sur-
faces [10] or Aame fronts [11]. We shall indeed propose,
in the last part of this paper, a "Langevin" equation for
the propagation of unbranched cracks in three dimen-
sions, which leads to this scaling behavior.

One must, however, appreciate that there are at least
two rather diAerent types of cracks. The first one is ob-
served in the case of slowly propagating cracks. Al-
though "rough, " the fracture surface is univalued: Its
locus can be described as a function z(r). All the above
cited experiments deal with this first type. The second
one is found when the crack exceeds a certain critical ve-
locity: As is well known [12,13], crack branching then
occurs, resulting in a complicated fracture surface with
many overhangs and secondary cracks. This motivated a
new series of experiments [14], on polycrystalline Ni3A1,
the aim of which was to study the statistics of these
branched cracks; see Fig. 1(a). A certain number of sta-

tistical properties were analyzed, in particular the fluc-
tuations of the number of points N(r) which have the
same abscissa r, or the probability P(z, r) that the point
(z, r) belongs to the structure, knowing that (0,0) does.
One finds that [14] (i) N(r) typically grows as r with
b =0.13+ 0.03, and (ii) P(z, r) takes a scaling form

P(z, r) =r ~P(z/r~)

with again /=0. 82 ~ 0.05. Furthermore, the scaling
function is extremely broad [see Fig. 2(a)]: V(u) =u
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FIG. 1. (a) Typical 20 cut of branched crack observed on
Ni3Al. See Ref. 114] for more details. (b) Crack generated by
numerically evolving a population of walkers obeying Eq. (2),
with 2 =2, .
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Experiment on Ni Al
3 existing crack may either propagate as a random walk,

die, or give birth to a secondary crack. Furthermore,
when two cracks come close to each other, one of them
dies. The coarse-grained equation governing the time
evolution of the crack density p(z, r) may thus be written
as

rip(z, r) 'r)'p(z, r) + ( ),( )
rir Bz z (2)
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for I ~ u ~zm, „/r~. Hence P(z, r) =z ' independently
of r as soon as zm,„~z ~ r~. The crack can thus be pic-
tured as a "IIuffy fractal": Its self-affine backbone (with
roughness exponent /=0. 8) is decorated by a density of
branches decaying as z ', which extend up to z
=zo+ Cr~ (z~,

„
is the total width of the structure, in-

cluding branches; see [141).
The aim of this Letter is to discuss these results from a

theoretical point of view. We first suggest that two-
dimensional directed percolation (DP) is an excellent toy
model, which contains the important ingredients to repro-
duce the main properties reported above (although the
value of the exponents are incorrect). We then show how
these properties are common to all "critical" branched
structures, i.e., to structures which barely survive without
exponentially growing. We argue that fracture is by
essence critical in that sense.

Let us thus start by analyzing a minimal model of
crack branching in two dimensions. We assume that an

++ ~ X

3
log u [= log z/r &]

FIG. 2. (a) Plot of V(u) [defined by Eq. (1)], for different
values of r, for the experimental cracks of Ref. [14]. (b) Same
as (a), but for the directed percolation cluster problem, and for
r =1,2, 4, 8, . . . . Note that P(r, z) is defined by averaging over
all possible pair of points belonging to the structure. The
departure from a u ' behavior occurs earlier for large r since
for a given picture of length L, u,„=z,„/rt=(L/r) r. We have
used L =500.

where D is the "dift'usion constant" of the cracks, 8 mea-
sures the difI'erence between the branching probability
and the death probability, and 8 models the competition
between cracks. It is reasonable to assume that as the
external stress is increased, A increases while 8 and D are
roughly constant. Equation (2) has been thoroughly dis-
cussed in the literature [15-17]: For A less than a cer-
tain value A„the density p vanishes almost surely for
large times: The crack does not propagate. For A & 2„
on the other hand, the density reaches a finite value.

is thus a second order phase transition point,
which is in the universality class of directed percolation.
A typical crack obtained for 2 =8, is shown in Fig. 1(b).
The critical exponents for this case are well known
[15-18]: One finds in particular that the number of
branches N(r) grows as r ' with bop=0. 31, and that~DP

the "width" of the structure grows as r ' with pop =0.63
(note the relation between bop, pop, and their usual nota-
tion: bop=P/v~~ and (Dp=v&/vt). We have furthermore
computed numerically the full distribution P(z, r), aver
aged over all points belonging to the structure (as was
done in [14)), and found that it is precisely given by Eq.
(1), with /=pop, and 9'(u)=u ' for large u; see Fig.
2(b).

This model is of course too simple to describe the
three-dimensional problem of crack propagation. It
shows, however, very clearly how, by increasing the exter-
nal load, one progressively reaches the critical point
where the crack just manages to "percolate" through the
sample: This illustrates why scaling laws appear quite
naturally in fracture. It is, however, conceivable that one
may reach the regime 8 )2, by suddenly applying a
su%ciently large stress, or at the end of the fracture pro-
cess. In this case, one expects the self-similar regime to
be of finite extent: r (gee(A —A, ) ', with v=1.734
[18]. Before turning to more general statements, let us
add one remark. One may argue that due to the inherent
microscopic disorder, A should be randomly position
dependent: A(z, r). One can, however, show, using a
Harris-like argument, that since v(1+ &op) =2.84 ) 2,
disorder is "irrelevant. " We have confirmed this by nu-
merical simulations. If, however, 8 is zero, then Eq. (2)
with a random A(z, r) would be the equation for the par-
tition function of directed polymers in a random environ-
ment (i.e., an elastic string interacting with random im-
purities) [19], which was already proposed in the context
of unbranched cracks in [9,20,21). The idea of Refs.
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[9,21] is that a crack might minimize globally the frac-
ture "energy" along its path, and hence would be identi-
cal to the ground state of a directed polymer in a random
environment. An explicit model exhibiting this property
was discussed in [9]. This leads to (ZD= —, (rather close
to the DP value and to 2D experiments [22]) but

(30 0.4-0.5 [23,24], far below the experimental value
/=0. 8 (see, however, [4]). This whole argument assumes
that the equation of motion of the propagating crack can
be obtained by minimizing a certain (random) Hamil-
tonian. Dynamical equations possessing this variational
property are, however, the exception rather than the rule,
and the nonlinear Langevin equation [Eq. (4)l presented
below is a counterexample. On the other hand, the
minimal energy path can be found dynamically in the
presence of branching: Branching is indeed a well known
method to sample phase space thermodynamically (and is
commonly used in Monte Carlo simulations [25]).

We now give a more general description of critical
branched structures. We will define the probability per
unit length that the backbone gives birth to a new
oAspring as l/l~. The probability that this new structure
survives at least for a length r —r' will be denoted
K(r —r'), in which case the number of branches it con-
tains is N(r —r'). If the whole structure is self-similar,
then the total number of branches after a length r is given
by

~r
N(r) = dr' K—(r —r')N(r —r'), (3)Jo ll

which leads to the following diAerential equation for
N (r ): dN (r )/dr =K(r )N (r ). Now, if K(r ) decays fas-
ter than r ', N (r ) tends a constant for large r. If K(r )
decays as r ' with a ( 1, then N(r) grows very fast with
r: N(r)=exp(r' '). a=1 hence appears as a critical
value where the branched structure barely survives.
Writing K(r) =t2/r, one finds N(r) =r with b—= I2/l~.
From the definition of K(r), dK(r)/dr is the probability
that the structure has a length equal to r. The average
length l of the structure is thus given by I =fo dr
xrdK(r)/dr—=fo dr K(r). The critical point a =1 is thus
the point where l just diverges. This r ' behavior of
K(r) is found analytically in the well known problem of
branching on a Bethe lattice (for which b =2) [26], and
also, very recently, on various tree structures studied nu-
merically [27,28]. A general argument for such a behav-
ior can thus be constructed, which furthermore shows
that the exponent b measures the ratio of two important
length scales: the typical length 12 of one branch and the
distance l~ between branches. b was found to be =0.13
in the experiments on Ni3A1, which is compatible with
the visua1 aspect of the cracks.

Now, defining N(z, r) the number of points belonging
to the structure with coordinates z, r, one has, from the
definition of P(z, r), N(z, r) =N(r)P(z, r—). One can
write a general equation obeyed by N(z, r) as

gr f + oo

N(z, r ) = dr'(I/I ~)K(r —r') dz'P(z', r')N (z —z', r —r') (4)

Now, assuming the scaling form given in Eq. (1) and K(r) =lz/r, we find that the function 7 has to satisfy the following
relation:

f ] f'+oo
V(u) =b dv dw(1 —v)b 'v &V —w

0 Q —oo

If one looks for a solution of Eq. (5) of the form
P(u) —u~o/u '+" for large u, then p is found to obey the
equation blab)I ((p+ I) =I (b+gp+I), the only solu-
tion of which being p =0. Hence we find P (u ) =u

i.e., precisely the form of 9 suggested by the experimen-
tal data of branched cracks and the numerical data on
directed percolation clusters.

We have thus shown how the power law behavior of
N(r), K(r), and P(u) could be simply understood if one
assumes that the branched structure is critical in the
sense that its average length is just divergent. This
scenario occurs in the physically compelling model of
two-dimensional directed percolation, but is clearly more
general and applies to the cases studied in [26-28]. It
would also be very interesting to study other branched
cracks to see whether the exponent b is universal or if it
can be used to discriminate between diAerent branching
modes.

The next step would be, of course, to build a minimal
model for the three-dimensiona1 problem. Although we
have not found how to generalize Eq. (2) for three-
dimensional branched cracks, it is interesting to discuss
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the case of unbranched cracks. The simplest nontrivial
equation describing the propagation of a line (the crack
front) in a disordered medium is the following:

|)x ~+ 6 x + 8x + rl + ( )
2

Bt Qy 2 |Iy 2 By

(6a)

Bz 8 Z 8X 8Z+X +rI, (y, r), (6b)
tly y, , t)y

where x is the direction of crack propagation, y is along
the crack front, and z is the tensile axis. V is the nominal
crack velocity, y is the "line tension, " and g„,are noises
describing the local disorder in the material. Finally, the
nonlinear terms [Q describe the fact that the local crack
velocity depends on the local direction of the crack, and
are the only ones allowed by the symmetries of the prob-
lem: (y —y), (z —z). The trace of the crack front
is then the fracture surface, the equation of which is
z(x,y) [29]. Interestingly enough, Eq. (6) was recently
discussed in the context of driven vortex lines in super-
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conductors [30]. One finds that z(x,y) is an anisotropic
self-affine surface:

& [z (x,y) —z (0,0)] ') =y 't'G (x/yt') (7)
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