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Structure of Salt-Free Linear Polyelectrolytes
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The level of understanding of charged polymer chains is far less than that of neutral chains. Since
they pose difficult theoretical and experimental tasks, they especially warrant simulation studies.
We performed molecular dynamics simulations on multichain systems of flexible chains with full
Coulomb interactions of monomers and counterions treated explicitly. This model produces osmotic
pressure data that agree excellently to experiments and extend them. The chain conformation
changes from stretched to coiled as the density increases to semidilute. The persistence lengths
show discrepancies with the Odijk et al. wormlike chain picture.

PACS numbers: 61.25.Hq, 36.20.-r, 87.15.~v

Polyelectrolytes remain one of the least understood
states of condensed matter [1-3]. This is in great contrast
to the well developed theory of neutral polymer solutions
[4]. Experimentally bulk properties such as viscosity [5]
and the osmotic pressure [2] are well established. Yet
an understanding of the origin is lacking. This igno-
rance about the microscopic nature of polyelectrolytes
is especially critical since charged polymers are of fun-
damental importance to biology (e.g., DNA, RNA), to
technical applications of water soluble polymers, and to
research on their viscoelastic properties. Progress is in-
hibited by the difficulties encountered in the presence of
charges on the polymer chain and the companion counte-
rions. The main complication is the long range nature of
the Coulomb interaction which simply cannot presently
be handled theoretically without severe approximations.
Furthermore, not only does the Coulomb interaction add
a new length scale to those of a neutral system, but also
the presence of counterions required by charge neutral-
ity adds more length scales. Scaling theories, so useful
in neutral polymer theory, are no longer as simple and
clearly applicable to polyelectrolytes. Because theoreti-
cal and experimental efforts on charged polymers are so
difficult, simulation studies are especially warranted.

In this Letter, we describe results of molecular dynam-
ics simulations on salt-free systems of polyelectrolytes
that cover the concentration range from dilute to semidi-
lute. We use the freely jointed bead-chain polymer model
which has been very successful in simulations of neutral
polymers [6]. The system is composed of the charged
monomers and the counterions. The charged particles
interact via the full Coulomb potential. The solvent is
replaced by a dielectric background. This is the simplest
model that explicitly handles the counterions. Our work
goes beyond previous simulations which only considered
a single chain [7,8].

The present understanding of polyelectrolyte structure
comes from the limiting case of dilute concentrations
where the chain is assumed to take on a simple rod geom-
etry [9-12]. Some work has been done on perturbation of
the rod state due to increasing the polymer concentration
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or adding salt in order to screen the Coulomb interactions
[10-14]. These works describe the polymer as a wormlike
chain with a persistence length, L, = L. + L;, where L;
is the intrinsic persistence length of the uncharged poly-
mer and L. is the electrostatic persistence length given
asymptotically by [10,12]

Le = A*Xp/4b?, (1)

where the Debye length A = k™! = (4mAppm)~1/2, the
Bjerrum length \g = e%/ckpT, ¢ is the dielectric con-
stant of the solution, p,, is the monomer density, and b
is the distance between charges along the polymer back-
bone. This form is supposed to hold for kL > 1, where
L is the contour length of the chain.

The polymer structure in the crossover region be-
tween rodlike and coiled conformations is still unclear
[1,3,15-17]. Odijk [17] and Hayter et al. [1] have proposed
similar pictures of polyelectrolyte structure albeit for dif-
ferent physical reasons. Using this picture Odijk has pro-
posed a scaling theory [17]. The chains remain stiff with
increasing concentration until L, ~ L at monomer con-
centration ¢f = 1/16wb%L for kL > 1. Above c, the
chains have a wormlike conformation. A second tran-
sition occurs at ¢§ = 0.04/47A} = 0.0030~3 when the
strand-strand distance £ equals L.. It should be men-
tioned that £ < L. is possible in all density regimes.
Since this theory is a single chain theory, both densities
are not directly connected to the classical chain over-
lap concentration c* = (L/b)/(mR3/6), where R is the
average end-to-end distance. de Gennes et al. [16] have
described an alternative picture in the semidilute regime.
Instead of the persistence length varying with density, it
is pinred at the strand-strand distance. One part of the
motivation of the present study is to shed some light on
these concentration effects.

Our simulations extend the work of neutral good sol-
vent polymer simulations to polyelectrolytes. Although
experiments are often in poor solvent, we use a good
solvent, in order to have a well known reference state
and in order to compare with similar theoretical work.
The difference would only show up in a regime where the
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electrostatic repulsion becomes less important. Since in
the neutral polymer simulations 16 bead chains are suf-
ficiently long, our polyelectrolyte simulations were done
with 16, 32, and 64 bead chains. In some cases we ex-
tended the runs to N, = 128 beads. The number of
chains was either 8 or 16. The bond potential is the stan-
dard FENE (finite extendable nonlinear elastic) potential
with spring constant k = 76/0’2, and maximum extent,
Ry = 20, where here, as throughout this Letter, Lennard-
Jones units are used [6]. The average bond length is
1.10. Excluded volume effects among the monomers and
counterions are included via a repulsive Lennard-Jones
(RLJ) potential with the cutoff at 2'/%c except for the
counterion-counterion RLJ interactions which have the
cutoff at 2/85/4. In this way counterions cannot get
in between neighboring monomers on a chain and are
smaller than these monomers.

In contrast to previous simulations we evaluate the
Coulomb interaction by a spherical approximation to the
Ewald sum given by Adams and Dubey [18]. This in-
volves using a truncated octahedral simulation cell, the
Wigner-Seitz cell of a bce crystal, since it improves the
convergence over the simple cubic cell. This method im-
proves upon the minimum image evaluation of Coulomb
interactions by an order of magnitude in the energy. The
Coulomb coupling strength is determined by the Bjer-
rum length Ap, which for this work is taken to be lo.
The Coulomb pair energies are then weaker than kgT
and the spherical approximation should be sufficient, yet
Coulomb systems are notorious for requiring treatment
of the long-range interactions beyond the simulation cell.
For this reason, we have checked that the results of the
approximate form are consistent with the Ewald sum.
For our parameters the Manning ratio Ag/b = 0.9. Thus,
we are slightly below the Manning condensation limit and
in the strong interaction regime. These parameters were
chosen because many theoretical calculations and experi-
ments have been performed in this crucial regime [1,3,16].

The dynamics of the system is done at constant tem-
perature, T = 1.2¢, using the Langevin thermostat with
damping constant I' = 1771, and time step 0.0157 [6].
The thermostat incorporates the damping effects stabi-
lizing the system. The motion damping by a real solvent
would be much stronger [6]. The length of the simulation
is such that the chains move at least 10 times the contour
length L. For 32 bead chains this required about 600 000
time steps.

One quantity which is experimentally measured rela-
tively easily and is thus a good test of the simulations is
the osmotic pressure II. The osmotic pressure has been
measured on several systems and two scaling regimes are
exhibited [2]. At low densities, II ~ po/®, which is the de-
pendence predicted by Odijk’s scaling theory [17]. In the
high concentration regime the scaling exponent changes
to 9/4, which is the scaling for semidilute neutral poly-
mers [4]. These results suggest that the polyelectrolyte
chains are stretched at dilute concentrations and are sim-

ilar to neutral chains in good solvents at semidilute con-
centrations. According to Odijk, the crossover should
occur at cj, independent of L.

Indeed our simulation results shown in Fig. 1 give two
scaling regimes. In the semidilute regime we find the
same scaling exponent 9/4. In the dilute regime our re-
sults lie slightly higher than Odijk’s prediction which the
figure shows to become a poor fit at extremely low densi-
ties. Fitting the 64 bead data over the smaller experimen-
tal density range [2] yields an exponent of 1.05. This is
consistent with the experimental osmotic pressure which
shows a weak molecular weight dependence in the dilute
regime. This is possibly related to the importance of the
chain ends as a function of the screening. We also observe
a weak chain length dependence, which seems to decrease
at low density. For p,, — 0 the data agree very well with
the expected noninteracting limit, IT = kgT pm, (1+1/Np).
The prefactor for IT is very near to 1 as expected, since
the density is measured for simulations by the number
density.

One striking aspect of the osmotic pressure data is the
lack of any chain length dependence of the crossover den-
sity, p§£‘) = 0.07 £ 0.04, about a factor of 23 larger than
the prediction of Odijk. The fact that for p,, > pg[ )
the II dependence is that of neutral polymers suggests
that the Coulomb interactions are completely screened at
Pm = pS,‘} ). For complete screening, the Debye screening
length should be less than all interparticle distances. The
monomer separation is the shortest particle separation
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FIG. 1. The osmotic pressure is plotted as a function of the
monomer density on a log-log scale for various chain lengths.
The 16, 32, and 64 bead chains are represented by squares,
pentagons, and hexagons, respectively. For low densities in
the experimental range, the pressure scales with an exponent
1.05, slightly below the Odijk prediction marked with an ar-
row. At high densities the exponent is 9/4, which is that of
neutral chains. The errors are smaller than the points. The
data show a very weak chain length dependence as in the
experimental studies [2].
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FIG. 2. The ratio of the end-to-end distance and the radius
of gyration is plotted versus the log of the monomer density.
A value of 12 corresponds to a rigid rod and a value of 6 cor-
responds to a neutral chain in dense solution (random walk).
The dilute-semidilute crossover does not lead to an observable
effect in this plot. The densities can be estimated [19] to be
pm =~ 0.20072,0.050 73, and 0.017¢ 2 for N = 16,32, and 64.

distance. We find A = b at p,, = 1/47Agb? = 0.0660 3
for our set of parameters. This value agrees perfectly well
with our simulation data. It is striking to mention that
this density is well above the strand overlap density for
N, = 64 while it is still weakly below for N, = 16.

A convenient quantity to analyze the transition from
stretched to coiled conformation is the ratio of the av-
erage square end-to-end distance and radius of gyration,
r = (R?)/(R%). For thin rigid rods, 7 = 12; for flexible
chains in good solvent, r = 6.3; for ideal chains, r = 6.
The plot of r versus p,, (Fig. 2) at the highest den-
sity is within error approaching the ideal chain value as
expected for dense solutions. Although the chains are
strongly overlapping, r starts to increase monotonically
with decreasing density. The initial increase in r ap-
pears to follow a chain length independent curve. Thus,
it should also be valid for longer chains. At the lowest
densities, there is a chain length dependent saturation
such that in the dilute limit the rigid rod value is not
reached for any of our chain lengths (see also Fig. 3
below). Longer chains which have more charges have a
larger tension and thus are straighter with larger r val-
ues. Even in the dilute limit some flexibility persists,
resulting in a saturation of r below r = 12.

The saturation of r occurs at p,, =~ 1 x 10~%4s~3 and
2 x 107303 for N, = 16 and 32, respectively. The N, =
64 case appears to saturate at 1 x 10~85—3. From Odijk’s
theory one expects a saturation to occur at ¢§. Because of
finite chain length corrections, ¢} is not defined for these
short chain lengths [10]. However, for N, = 128, c% (V)
is defined and gives 2.8 x 10~5¢ 3. This value is by far
too high as it corresponds to the N, = 32 saturation
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FIG. 3. The persistence length for N, = 32 calculated as-
suming a wormlike chain (open points) and using the micro-
scopic definition (solid points). The disagreement between
the two confirms that the chains are not wormlike. The line
gives L, from Odijk’s complete expression including finite size
corrections.

density. Thus the chains do not reach full stretching and
continue to increase L, far below the predicted ¢} value.
One reasonable guess for an alternative calculation of the
saturation density, c7, is the density at which there is one
counterion per polymer volume, pg,ll) = 1/(xR3/6). For
densities below this value, the counterions have negligible
screening of the intrachain interactions and one expects
r to be constant. For N, =16, 32, and 64, p%) =23x
1073073,2.3x 107403, and 2.3 x 107853, respectively.
These values, and more importantly their ratios, agree
much better with our data. Another important point
is that the simulation saturation densities are below the
overlap densities (see Fig. 2). This result contradicts the
de Gennes et al. prediction for ¢; [16].

Even though the chains are stretched, the manner of
stretching appears to be very different from theoretical
expectations. To consider the dilute regime further, we
can calculate the persistence length and compare directly
to the predictions of theory. The persistence length can
be “microscopically” calculated as from [4,7]

1 Np/2-1
Ly=3 D" (bo-b;+bg-b_j), (2)
i=1

where bg = ry, —rn;, 41 and b; = ry, 4+; — TN, 4541 With
N}y, = Np/2, where r; is the position of the ith monomer.
Alternatively, similar to experiment, we can calculate the
persistence length from the expression for the average
end-to-end distance of a wormlike chain:

R? = 2LL, — 2L2[1 — exp(—L/Ly)]. (3)

The values of L, for N, = 32 for the two different meth-
ods are plotted in Fig. 3. The error in L, using either
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FIG. 4. The form factors for Ny,=16, 32, 64, and 128 at

pm = 5 x 1077073, These S(q) are independent of chain
length for ¢ > 27/R.

method is £0.10. Clearly, the two methods do not agree,
implying that the chains are not wormlike. The form of
the curves is similar to that seen for r» with saturation
occurring in the extreme dilute limit. We have included
Odijk’s full expression including finite size effects in Fig.
3. Clearly, our results do not agree with this theoretical
curve.

To consider the question of chain length dependence,
we examine the form factor, S(g), as a function of Np.
We have calculated S(gq) for all densities and find that
for ¢ > 27/R, there is no chain length dependence. For
example, Fig. 4 shows S(q) at p,m, = 5 x 10770~3. The
shortest chain length, N, = 16, has R = 9.4¢0 and there
is a drift away from the longer chain S(g) at ¢ = 0.6 =
2w /R. Given this chain length independence, we know
from the N, = 64 data what the structure is for longer
chains for length scales up to 20c. This again supports
the general validity of the present simulations.

The results of these simulations imply a different struc-
ture of linear polyelectrolytes than has previously been
thought. While the chains are stretched beyond the good
solvent structure, they do not attain a fully extended rod
conformation. Expecially at the overlap concentration
the chains are already significantly contracted in contrast
to the picture of de Gennes et al. [16]. Moreover, the

chain structure is not wormlike, and the density depen-
dence does not conform to the Odijk persistence length
calculations. On the other hand, at densities where the
Coulomb interactions become strongly screened out, the
chains do behave like neutral chains and scaling predic-
tions do agree with our values, though R remains signif-
icantly larger than the neutral case.
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