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Spatial and Temporal Averages in Chaotic Patterns
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We show that spatiotemporally complex patterns in the presence of a symmetry imposed by the con-
tainer geometry can have ordered spatial and temporal averages. The system studied was the Kuppers-
Lortz unstable state in rotating thermal convection. As the control parameter AT was increased above
onset, fluctuations about the ordered averaged state increased and the correlation of individual patterns
with the averaged state decreased. The pattern fluctuations about the averaged state were highly corre-
lated with the instantaneous heat transport fluctuations,
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There has been great interest in the properties of sys-
tems that display spatiotemporal chaos, with significant
fluctuations in both space and time [1]. An important
problem in the study of these complex patterns is finding
suitable methods for their analysis. So far relatively stan-
dard statistical methods have been used primarily [2-4].
Recently, an experiment on Faraday waves revealed or-
dered patterns in the long-time averages of individually
chaotic patterns as well as some of their properties [5].
Here we explore ways in which such averages are useful
in the study of the spatiotemporal dynamics.

Using the Kiippers-Lortz (KL) instability [6] in rotat-
ing Rayleigh-Benard convection which produces chaotic
pattern dynamics at the onset of convection for suffi-

ciently large rotation rates, we investigated the properties
of both spatial and temporal averages. As was done for
the Faraday wave case [5], we show that ordered time-
averaged patterns with the same symmetry as the
sidewalls of the container exist for cells of various shapes
and sizes. For very large containers, we find that the or-
dered averaged structure exists only near the sidewall.
We further demonstrate that for patterns with ordered
time averages, the spatial average of an instantaneous
pattern along a symmetry direction was essentially the
same as this spatial average performed on the time-
averaged pattern. This discovery allowed us to investi-
gate the temporal evolution of the spatial average and led
to a description of the spatiotemporal behavior of the
chaotic patterns.

We also studied the dependence on h, T of correlations
between instantaneous patterns and the ordered time
averages. This correlation decreased smoothly as the
fluctuation amplitude increased with increasing AT until
the time averages became featureless. Finally, we show
that the fluctuations about the ordered time averages are
strongly correlated with variations in the global heat
transport.

Our experiments describe the dynamics of patterns in
rotating Rayleigh-Benard convection in a parameter re-
gion where the Kuppers-Lortz instability produces chaot-
ic dynamics at the onset of convection. The control pa-
rameters of the experiment are the top-bottom tempera-
ture difference h, T and the dimensionless rotation rate

Q =QDd /v, where v is the kinematic viscosity of the
working fluid, QD is the angular frequency of the rotating
cell, and d is the depth of the fluid layer. We used two
fluids, water near 24 C and carbon dioxide at about 20
atm, having quite diAerent fluid properties; the Prandtl
number a= v/tc, where tc is the thermal diffusivity, is
about 6.4 for water and 0.9 for carbon dioxide. A re-
duced bifurcation parameter is defined as e = [AT

AT, ( Q)]/AT, ( Q), where AT, (Q) is the critical tem-
perature diff'erence for the onset of convection in the inte-
rior of the container, i.e., for "bulk convection, " at a par-
ticular A. Over some ranges of rotation rates, this onset
can be preceded by a wall convection state consisting of a
propagating wave localized radially near the sidewall [7].
The geometry of the convection container is characterized
by the aspect ratio I =r/d, where r is the radius of the
cylindrical container or, in the general case of a symme-
trical polygon, the perpendicular distance from the
sidewall to the center. The convection patterns are visu-
alized using digitally enhanced shadowgraph imaging.
Details of the setups for the water and carbon dioxide ex-
periments are presented elsewhere [8,9].

The convection containers we used in this series of ex-
periments will be labeled CW (cylindrical, water), CC
(cylindrical, CO2), and HC (hexagonal, CO2). The criti-
cal rotation rate for the KL instability in water (COz) is
about 23 (13). Container CW (I =2.5) had a sidewall
made of 0.31 cm thick and 2 cm high plexiglass which
had a lower thermal conductivity than that of the work-
ing fluid, water. Containers CC (I =4.5) and HC
(I =4.4) were used with pressurized carbon dioxide.
Placed inside the active area of a larger convection cell,
their sidewalls were made of 0.42 cm high, 0.01 cm thick
paper with a higher thermal conductivity than that of the
gas. For the range of rotation rates used in the experi-
ments, the instantaneous convection pattern in these rela-
tively small I systems consisted of the KL unstable bulk
convection rolls coexisting with the sidewall traveling
state which was confined near the rigid walls [7]. Anoth-
er container CC (I =41) which had sidewalls made of
paper with a fin extending some distance into the fluid at
half height [9] was also used. At the low rotation rates
studied for this large container, only bulk convection was
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FIG. 1. The instantaneous (left) and time-averaged (right)
patterns in rotating Rayleigh-Benard convection in (a) the cy-
lindrical container CW at 0 =1090 and a=0,053 with water;
(b) the hexagonal container HC at 0 =150 and a=0.08 with
carbon dioxide.

present.
Ordered time-averaged patterns were found to exist in

a range above the onset of convection for all the samples
studied, and they all displayed the symmetries of the con-
tainers. Two examples are given in Fig. 1. Figure 1(a)
shows at left an instantaneous pattern at Q =1090 and
a=0.053 in the cylindrical container CW. The separa-
tion between the wall and bulk convection is quite clear.
At right the figure shows that the average of 900 patterns
taken 120 s apart is a concentric ring pattern. During
this period, the rolls and cells of the bulk convection
reoriented over 20 times due to the KL instability. The
forcing from the boundary produced a phase rigidity of
the patterns that manifested itself in the temporal aver-
ages. A high degree of phase rigidity of averaged pat-
terns was also observed in Ref. [51. Figure 1(b) shows
instantaneous and averaged patterns over several hundred
KL transitions at Q =150 and t. =0.08 in the hexagonal
container HC. The averaged pattern shows clearly the
hexagonal symmetry of the boundary.

An experiment in a larger container CC (I =41), such
as the example in Fig. 2, showed that such averages did
not relate trivially to the instantaneous patterns. Here
the no-slip boundary conditions tended to force the con-
vection rolls to end perpendicular to the sidewall, yet the
time average revealed ring structures parallel to the
sidewalls, with an amplitude that decayed in the direction
away from the boundary. This result suggests that the
ordered averaged patterns which we have observed are
unrelated to any symmetries of the underlying chaotic at-
tractor [10]. Previous studies have shown that owing to
the mismatch between the thermal properties of the
working Auid and the sidewalls, a small horizontal tem-

FIG. 2. The instantaneous (top) and time-averaged (bottom)
patterns in rotating Rayleigh-Benard convection in the cylindri-
cal container CC (I =41) at 0 =16 and a=0. 10 with CO2.
The time average is obtained from 720 images covering 6 h.

perature gradient existed from the wall into the bulk of
the fiuid and caused a weak large-scale circulating Aow

along that gradient [11]. This in turn caused the convec-
tion rolls to orient preferentially parallel to the wall. The
above results led us to believe that the ordered time-
averaged patterns resulted from such boundary eAects,
even in the chaotic regime. Since thermal forcing, or
boundary eAects in general, are extremely hard to elimi-
nate, this study shows that care must be taken to separate
bulk pattern dynamics from boundary efI'ects even when
the latter are not obvious in the instantaneous patterns.

To study the time-averaged ring pattern for container
CW (I =2.5), we averaged the intensity azimuthally and
plotted the result in Fig. 3(a). The periodicity was close
to the critical wavelength of bulk convection. Also plot-
ted in Fig. 3(a) is the same average for the instantaneous
pattern in Fig. 1(a). The two curves are almost identical,
demonstrating that the phase rigidity imposed by the
sidewall forcing was strong enough to retain the container
symmetry in the convection pattern at any instant for this
e. The apparently random pattern of the bulk convection
was the result of random deviations, both in space and
time, from that underlying regular average structure.
Similar analysis was performed on the patterns in the
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FIG. 3. Spatially averaged intensities for the instantaneous
(dashed line) and time-averaged (solid line) convection patterns
at (a) 0 =1090, e=0.053 in the cylindrical container CW and
(b) 0 =150, e=0.08 in the hexagonal container HC.

hexagonal container. The spatial averages were carried
out along lines parallel to the hexagonal sidewall. The re-
sults are shown in Fig. 3(b). The irregularity near the
center for patterns in container HC is caused by the im-

perfect nature of the hexagonal pattern, by the weaker
eA'ects of sidewall forcing at the center, and by there be-
ing few points available for averaging.

To examine the dynamics of such spatial averages,
space-time plots of the azimuthal averages of the instan-
taneous patterns were generated. Some examples ob-
tained in the cylindrical container CC (I =4.5) are
shown in Fig. 4. Near onset the averaged pattern had 5.5
periods and a corresponding wavelength that was close to
the critical wavelength. As e increased, the preferred
wavelength of the convection pattern became larger. The
number of periods in the averaged pattern started to fluc-
tuate between 5.5 and 5, with the 5.5-period state being
the predominant one. CJluckman et al. [5] also observed
discrete steps in the wave numbers of their patterns as |..
varied, but do not report fluctuations at constant t. . The
typical fluctuation frequency of the averaged state in-
creased with increasing e, resulting in weaker patterns in

the time average away from the sidewalls. At a=0.15,
except for 1 or 2 periods near the boundary, there was no
dominant spatial structure left in the spatially averaged
state, and there were only 1 or 2 rings near the wall that
remained in the time-averaged pattern. To supplement
these results, the pattern dynamics in the hexagonal con-
tainer HC were also explored. We obtained similar re-
sults, some of which will be discussed in more detail later.
There was no evidence that chaotic patterns could have a
regular time-averaged pattern without the influence of
boundaries. The above results indicate, however, that it
is possible to reduce the spatial dimensionality of spa-
tiotemporal chaotic patterns using symmetries found in

FIG. 4. Space-time plots of the azimuthally averaged inten-
sities of the instantaneous patterns at a few labeled e in the cy-
lindrical container CC (I =4.5). In each plot, the center of the
container is at the left edge and the wall is at the right edge,
and time goes up. The time span is 3000 s. All the images are
digitally enhanced.
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FIG. 5. The mean (C, solid symbols) and the standard devia-
tion (6C, open symbols) of the correlations of the instantaneous
patterns and the averaged regular pattern in the cylindrical con-
tainer CC (circles, I =4.5) and the hexagonal container HC
(diamonds, I =4.4).

the system geometry.
Using the underlying structural regularity of the pat-

terns as a base, we studied the fluctuations of the patterns
and their relationship to the fluctuations of a global prop-
erty, the instantaneous heat transport. The pixel values
of the instantaneous and averaged patterns were assigned
the value 0 (I) when they were originally less than
(greater than) the mean of the pixel values for that im-
age. At each pair of corresponding pixels of the instan-
taneous and averaged patterns, 1 and 1 or 0 and 0 were
counted as 1, whereas 1 and 0 or 0 and 1 gave —1. The
spatial average C(t) of this resultant pattern represented
a measure of the correlation of the instantaneous pattern
with its averaged regular pattern: The larger the number
was, the less the pattern deviated from the averaged
structure. Figure 5 shows the time average C for patterns
in container CC (I =4.5). Also shown are the standard
deviations SC of C(t), which represent the amplitudes of
the fluctuations. The corresponding results for the hexag-
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tern, the heat transport of the system was enhanced.
Since a constant amount of heat was being supplied, this
resulted in a decrease of the bottom temperature and thus
the temperature diA'erence. The large fluctuations in
C(t) and AT(t) corresponded to KL transitions since the
patterns were most disorganized during those transitions
[12]. This result showed that order and fluctuations of
the patterns, as defined relative to the time average, were
physically meaningful quantities of the spatiotemporally
chaotic system.

We wish to thank N. B. Tufillaro for bringing our at-
tention to time averaging of chaotic patterns, and to J.
Gollub for sharing the results of his group with us before
publication. This work was funded by the U.S. Depart-
ment of Energy and a UC/INCOR grant.

FIG. 6. Top graph: the correlation between instantaneous
and averaged patterns (solid line), and the temperature
difference across the fluid layer (dashed line, maximum to
minimum represents roughly 2 mK), in the cylindrical container
CW. Bottom graph: the cross correlation between the two
curves in the top figure.

onal container HC are also shown in the figure. Clearly,
the mean correlation C decreases and the fluctuations BC
increase with increasing e. At a=0.15, the mean corre-
lations for both containers reached a base line value, es-
timated to be 0.1, and the standard deviations saturated.
At this point the dominant symmetry-based spatial aver-
ages of the patterns disappeared.

Next we studied the cross correlation between fluctua-
tions of the patterns and the instantaneous heat transport
of the system. We used the previously obtained C(r), and
AT(t), for the container CW experiment. The top graph
in Fig. 6 shows the fluctuations around the mean of such
time series for 0 =1090,e =0.053. The curves look qual-
itatively similar to the result for C(r) reported at one
value of e in Ref. [5]. The bottom graph in Fig. 6 shows
the cross correlation of the two. There is a strong corre-
lation between C(t) and d T(t); the maximum correlation
is about 70% of the peak value of the autocorrelations.
The interpretation is as follows: As the pattern became
more organized relative to the ordered time-averaged pat-

'Permanent address: Department of Physics, University of
California, Santa Barbara, CA 93106.

[1] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. (to
be published).

[2] S. Ciliberto and P. Bigazzi, Phys. Rev. Lett. 60, 286
(1988); M. Caponeri and S. Ciliberto, Physica (Amster-
dam) 5$D, 365 (1992).

[3] N. B. Tufillaro, R. Ramshankar, and J. P. Gollub, Phys.
Rev. Lett. 62, 422 (1989).

[4] M. Dubois, F. Daviaud, and M. Bonettie, Phys. Rev. A
42, 3388 (1990).

[5] B. J. Gluckman, P. Marcq, J. Bridger, and J. P. Gollub,
Phys. Rev. Lett. 71, 2034 (1993).

[6] G. Kiippers and D. Lortz, J. Fluid Mech. 35, 609 (1969).
[7] L. Ning and R. E. Ecke, Phys. Rev. E 47, 3326 (1993).
[8] F. Zhong, R. E. Ecke, and V. Steinberg, J. Fluid Mech.

249, 135 (1993).
[9] Y. Hu, R. E. Ecke, and G. Ahlers (to be published).

[10] P. Chossat and M. Golubitsky, Physica (Amsterdam)
32D, 423 (1988).

[11]G. Ahlers, M. C. Cross, P. C. Hohenberg, and S. Safran,
J. Fluid Mech. 110, 297 (1981); M. C. Cross, P. C.
Hohenberg, and M. C. Lucke, 3. Fluid Mech. 136, 169
(1983); V. Steinberg, G. Ahlers, and D. S. Cannell, Phys.
Scr. 32, 534 (1985).

[12] F. Zhong and R. E. Ecke, Chaos 2, 163 (1992).

2219








