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We show that in a chaotic scattering system the stable and unstable foliations of isolated chaotic in-
variant sets can become heteroclinically tangent to each other at an uncountably infinite number of pa-
rameter values. The first tangency, which is a crisis in chaotic scattering, provides the link between the
chaotic sets. A striking consequence is that the fractal dimension of the set of singularities in the
scattering function increases in the parameter range determined by the first and the last tangencies.
This leads to a proliferation of singularities in the scattering function and, consequently, to an enhance-
ment of chaotic scattering.

PACS numbers: 05.45.+b, 03.80.+r

Chaotic scattering occurs commonly in open Hamil-
tonian systems [1-3]. In such a case, the scattering func-
tion, which represents the dependence of some output
variable characterizing the scattering trajectory after the
scattering on some input variable characterizing the tra-
jectory before the scattering, displays a Cantor set of
singularities. Consequently, arbitrarily small changes in

the input variable can result in large changes in the out-
put variable. It has been established that chaotic scatter-
ing is due to the existence of nonattracting chaotic invari-
ant sets in the phase space that contains an infinite num-
ber of unstable periodic orbits [1-3]. These unstable
periodic orbits are intimately related to the set of singu-
larities on a line intersecting the closure of the stable
manifold of the periodic orbits embedded in the chaotic
invariant set [4] and, hence, they are also closely related
to the set of singularities in the scattering function. It
has also been found that after the onset of chaotic
scattering, further qualitative changes in the chaotic in-
variant set are possible as a system parameter changes
[2]. In this Letter, we present a new phenomenon in

chaotic scattering. It is akin to the merging crisis [5] in

dissipative chaotic systems. We henceforth call this
phenomenon crisis in chaotic scattering. Chaotic scatter-
ing occurs on both sides of the crisis. Before the crisis,
there exist two topologically and dynamically isolated
chaotic invariant sets in the phase space. As a system pa-
rameter changes, the closures of the stable and unstable
manifolds of the two chaotic sets first touch each other at
the crisis. Since both stable and unstable foliations have
Cantor structures, as the parameter is varied further,
both foliations pass through each other experiencing an
uncountably infinite number of heteroclinic tangencies in
the process. The initial tangency, then, corresponds to
the crisis and provides the link between the two chaotic
invariant sets.

There are two major consequences resulting from this
crisis. The first one is that once the crisis has occurred,

an uncountably infinite number of new periodic and
chaotic trajectories are suddenly created. These trajec-
tories live in the union of the two chaotic sets that existed
before the crisis. However, as long as the stable and un-
stable foliations keep creating tangencies as the parame-
ter varies, the number of periodic and chaotic trajectories
keeps increasing. It means that there is an uncountably
infinite number of new possibilities for scattering trajec-
tories. The second major consequence is that the fractal
dimension of the set of singularities in the scattering
function increases during the crisis. We stress that a
crisis in chaotic scattering is triggered by an infinite num-
ber of tangencies of stable and unstable foliations, which
will occur when both foliations have a fractal structure.
Such Cantor-like stable and unstable foliations are, how-
ever, typical in chaotic scattering systems [2].

In order to illustrate these findings, we consider a sys-
tem in which particles are scattered from a two-
dimensional array of nonoverlapping, elastic scatterers in
the plane [3]. These scatterers are placed at constant in-
tervals D along the y axis and each scatterer is represent-
ed by a circular attractive potential V(r) that becomes
negligibly small for r & R, where R & D/2. The effect of
an individual scatterer on a scattering particle can be
characterized by the elastic deAection angle e(l) as a
function of the angular momentum l. Note that O(l)
vanishes for l & l,„=uR (mass of the particle =1) due
to the finite range of the potential, where u is the particle
velocity in regions where the potential is negligible. Since
the system is invariant under time reversal, we have
8(—l) = —9(!)mod(2tr). The crisis studied in this pa-
per occurs in an energy range where the scattering is hy-
perbolic [2,3,6,7]. For V(r) we choose the Woods-Saxon
potential which is often used in the context of nuclear
physics [8], V(r) = —Vo/[1+exp[(r —Ro)/a]], where
Vo& 0, and Ro and u are constants. At large distance r,
V(r) vanishes exponentially. For this system, it is con-
venient to choose the angular momentum l and angle P as
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dynamical variables [3], where P is the angle of a particle
trajectory relative to the —y axis when the particle is in

regions where the potential is negligible. In this way, a
mapping can be defined that relates (I,P), the dynamical
variables of the particle trajectory with respect to a
scatterer, to (I',P'), the dynamical variables of the parti-
c1e with respect to the next scatterer after being scattered
from the first scatterer. For ~l'~ ~ lm, „, the mapping can
be explicitly expressed as [3] P'=[P+6(l)]mod(2') and
l'=l —(Du)sgn(cosP')sinP'. If ~l'( & l,„, the particle
exits the system. In our subsequent numerical experi-
ments, we fix Vp =10, Rp =0 5, a =0 1, D =4, and
R =1.4. Thus V(r =R)/Vp —10 so that adjacent po-
tentials do not appreciably overlap each other. When the
particle energy is large (E)) 10), we observe that the
phase space contains KAM surfaces and chaotic regions
(nonhyperbolic chaotic scattering) [6]. For E & 10, we
find numerically that all the KAM surfaces are destroyed
and the phase space only contains hyperbolic chaotic in-

variant sets. Henceforth, we vary E and investigate the
scattering behavior of the system for E & 10.

The chaotic invariant sets lie in the closure of the inter-
section of the stable and unstable manifolds. Note that
the map has two unstable fixed points: (0,0) (correspond-
ing to a straight trajectory along the —y axis) and (O, tr)
(corresponding to a straight trajectory along +y axis).
Numerically, we find that for E & E, =4.4, there exist
two topologically and dynamically isolated chaotic in-

variant sets associated with the unstable fixed points.
Note that the two chaotic sets must be identical due to
the symmetry of the system with respect to P =0 (or 2')
and P =tr. At the energy value Ef = 4.4, the stable mani-
fold of one chaotic set becomes heteroclinically tangent to
the unstable manifold of the other chaotic set, as shown
in Fig. 1(a). At this crisis point, both chaotic sets are
dynamically linked and particles initiated near one chaot-
ic set can reach and exit along the unstable manifold of
the other chaotic set. As E decreases passing through Ef,
the closures of the stable and unstable manifolds of the
two chaotic sets heteroclinically cross each other forming
additional chaotic sets at the intersection. Since both the
stable and unstable foliations of the chaotic sets have
Cantor structures before the crisis, there must be an un-

countably infinite number of tangencies between Ef and
Et = 4. 1 [corresponding to the last tangency, as shown in

Fig. 1(b)].
Physically, the occurrence of crisis for this particular

system can be understood as follows. For a fixed particle
energy, e(l) is a function of the angular momentum l.
At some l =l„e(l) attains its maximum value B,„. It
is interesting to note that the locations where the tips of
the stable manifolds cross the unstable manifolds in Figs.
1(a) and 1(b) correspond precisely to + l, . This max-
imum deflection angle determines the extent to which a
particle trajectory can turn over. The occurrence of crisis
entails that a particle trajectory going upward can exit
the system downward, and vice versa. This indicates that

27t

37t
2

0 I I I

—4.1 5 —2.08 0.00 2.08 4.15

37'
2

I

—2

FIG. 1. Stable and unstable foliations for (a) E =4.4 and (b)
F. =4.1. The unstable foliation is nearly horizontal.

~6,„~ is close to x when the crisis occurs. Indeed, as E
decreases, ~6»~ keeps increasing, as can be verified nu-

merically. For E ~ E*= 3.2, ~e,„~ =~. The situation
where ~6,„~

=~ is usually called "orbiting" [9].
Generally, the hallmark of chaotic scattering is the ex-

istence of a set consisting of an uncountably infinite num-

ber of singularities in the scattering function. This set of
singularities can be conveniently characterized by its
fractal dimension. [Recall that the number of boxes
N(e) needed to cover a fractal set scales with the size of
the box e as N(c) —e ", where d is the box-counting di-
mension of the set. ] To see the physical consequence of
the crisis in chaotic scattering, we compute this fractal di-
mension d as the energy changes through the crisis. We
use the uncertainty algorithm [10] to compute the fractal
dimension. It can be shown that the uncertainty dimen-
sion is smaller than or equal to the box-counting dimen-
sion, and it has been proved that both dimensions are
equa1 for nonattracting hyperbolic chaotic sets of typical
dynamical systems [11]. Figure 2 shows the uncertainty
dimension d for a Cantor set obtained by fixing Pp =2.55
[see Figs. 1(a) and l(b)] versus the particle energy E
curve. As can be seen from Fig. 2, d = 0.486 for E & Ef.
It increases as E decreases from Ef to E~ =4.1. For
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E &4.1, d =0.5"0.560. The increase in the fractal dimen-
sion indicates a r 1p oliferation of singularities in the
scattering function. Consequentl h

enhanc
y, c aotic scattering is

cantl c
en anced after the crisis. Changing p will0 wi not signifi-
can y c ange the dimension values in F 2 1ig. , as ong as

e ine cuts through all components of the st bl f
s. is has been verified by computing the dimension

at various energy values with slightly diA'erent Po. The
overall features of Fig. 2 appear th f br ere ore to be robust.

The dynamical process observed in our scattering mod-
el, includin the incr

'
g

'
ease of the fractal dimension of the

invariant set after the crisis, can be understood by consid-
ering the followin i

el:

'
g piecewise linear one-dimensional d-amo-

—six+ 1 i+A, x & 0,
s(x —1~+X, x ~ 0,

where s & —,
' [3+49+4(X—1)] and k & —1. For —

1

() (X =s/(s+ 2) h&, there are two isolated invariant sets.
These are the "middle a" Cantor sets with a =(s —2)/s,
so the box-counting dimension of each one of these isolat-
e invariant sets is ln2/lns. At X=X, the first tan

shown tn Ftg. 3(a), which provides a link be-
ween both Cantor sets. Hence, for X) A, thor f, t e invariant
e o e map is the union of the two previously isolated

Cantor sets plus the set created due to the linking of the
two Cantor sets. At k =s/( —2) hI

—s s —,t e last tangency
occurs, as shown in Fig. 3(b). For I, the large in-
variant Cantor set is self-sim 1 d h bi ar an as ox-counting di-
mension 21n2/lns. Hence, the graph of the fractal dimen-
sion of the invariant setet has two constant pieces and the
region k ~X~X whf I where the dimension increases from

e ig er constant value. Int e lower constant value to th h' h

act, in this transition region the dimensio b h
to be nondecreasing.

sion can e s own

Although the ma for hp the scattering system is smooth
and two dimensional, while our model system has discon-
inuities in the derivative and d

model camo e captures the essential features of the scattering
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wards (downwards) will never turn around and scatter
anew with a scattering potential below (above) from
which it came in the first place. Numerically, for E ~ 5,
channeling exists, which can be easily verified by calcu-
lating the scattering function. Most importantly, the
scattering is chaotic for the same energy value. The ex-
istence of both channeling and hyperbolic scattering (hy-
perbolic channeling) is a necessary condition for a crisis
in chaotic scattering to occur because it provides two
dynamically decoupled sets which merge at the critical
point E =Ef.

We argue the generality of the phenomenon of crisis in

chaotic scattering by using a simple one-dimensional
model. While the stable and unstable manifolds associat-
ed with the chaotic invariant sets in the two-dimensional
physical scattering system look rather special, namely,
the stable manifolds have a sharp bend and the unstable
manifolds are almost straight, the condition for a crisis to
occur is independent of these specific geometrical shapes
of the manifolds. As we have discussed in the simple
one-dimensional model, crisis and the subsequent increase
in the fractal dimension depend only on the occurrence of
an inftnite number of heteroclinic tangencies of the stable
and unstable foliations Since .fractal stable and unstable
foliations are a general feature of chaotic scattering sys-
tems [2], we expect crisis in chaotic scattering to be typi-
cal.
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