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Partial Dynamical Symmetry and the Suppression of Chaos
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Partial dynamical symmetry is a situation in which the Hamiltonian does not have a certain symmetry
yet a subset of its eigenstates does. It is shown that partial dynamical symmetry may cause suppression
of chaos even in cases where the fraction of states which has the symmetry vanishes in the classical limit.
The average entropy associated with the symmetry is a sensitive quantum measure of the partial symme-
try and its eAect on the chaotic dynamics.

PACS numbers: 05.45.+b

The dynamics of a generic classical Hamiltonian sys-
tem is mixed [1]; KAM islands of regular motion and
chaotic regions coexist in phase space. In the associated
quantum system it is usually dificult to separate the reg-
ular states from the irregular ones, although techniques
based on torus quantization and discrete symmetries have
had some success [1,2]. If no separation between regular
and irregular states is done, the statistical properties of
the spectrum are usually intermediate between the Pois-
son and the Gaussian orthogonal ensemble (GOE) statis-
tics. Even when the system seems to be fully chaotic, reg-
ular states may exist. This is the case of the hydrogen
atom in strong magnetic field near threshold where a
series of regular quasi Landau resonances coexist in a re-
gion of otherwise chaotic dynamics [3]. These resonances
can be explained by WKB quantization [4] and are asso-
ciated with approximate symmetries [5].

It is well known that symmetry properties may have a
large inAuence on the purity of eigenstates. The symrne-

try in question is often fulfilled by only a subset of eigen-
states. Such partial symmetries occur, for example, in

discrete nuclear states embedded in a continuum of decay
channels [6]. On the other hand, Hamiltonians with

dynamical symmetry are always completely integrable
[7,8]. A dynamical symmetry is a situation where the
Hamiltonian can be written as a function of the Casimir
invariants of a chain of subalgebras:

Gpg t ~ 0+G+ t ~ ~

The Casimir invariants, together with invariants associat-
ed with missing labels, form a complete set of constants
of the motion in involution. The eigenstates are labeled
by the irreducible representations (irreps) of the algebras
in the chain and the eigenvalues are known analytically.
The classical motion is purely regular.

Recently, the concept of dynamical symmetry has been
generalized [9] to include situations in which only a sub-
set of the Hamiltonian eigenstates is solvable, has good
symmetry, and can be labeled by irreps of G. The Hamil-
tonian itself is not invariant under G and various irreps
are mixed in all the other eigenstates. Such a situation is

H =h pPJPp+ h2+ P j&P2p,

where

P(~) =dt. dt —p02(st)'

P2„=posts +47/2(dtxdt)"'
(3)

are boson pair operators of angular momentum L =0 and

2, respectively, and standard notation for a tensor product

referred to as partial dynamical symmetry. The Casimir
invariants of G do not commute with H and are no longer
constants of the motion. The system is not completely in-
tegrable and may exhibit chaotic behavior.

The work of Ref. [9] established a concrete algorithm
to construct Hamiltonians with partial symmetries. Un-
like the situation in Ref. [5], the symmetry of the solvable
states is exact, yet does not arise from invariance proper-
ties of the Hamiltonian. This offers an important oppor-
tunity to study how the existence of partial (but exact)
symmetries aff'ects the dynamics of the system. If the
fraction of solvable states remains finite in the classical
limit, one might expect that a corresponding fraction of
the phase space would consist of KAM tori and exhibit
regular motion. The purpose of this paper is to point out
that partial dynamical symmetry can have an even
greater eff ect on the dynamics. We present an example
in which partial dynamical symmetry is strongly correlat-
ed with suppression (i.e., reduction) of chaos even though
the fraction of solvable states approaches zero in the clas-
sical limit.

A Hamiltonian which possesses a partial SU(3)
dynamical symmetry was presented in Ref. [9] in the
framework of the interacting boson model of nuclei [10].
The degrees of freedom of the model are one monopole
boson (st) and five quadrupole bosons (d„t). The bilinear
combinations jsts, std„, dots, d~td„] form a U(6) algebra.
This model has been used in analyzing spectroscopic
properties of quadrupole collective states in a wide range
of nuclei. Within the model we consider the following
family of Hamiltonians [9,11]:
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is used [12]. hp, h2, and pp are parameters. When
Pp= J2, the Hamiltonian (2) reduces to that of Ref. [9]
and has an SU(3) partial dynamical symmetry. If in ad-
dition h 2/hp =2, the Hamiltonian exhibits an SU(3)
dynamical symmetry. Other dynamical symmetries of
the Hamiltonian (2) are obtained for h2=0 [O(5) sym-
metry]; h 2 =0 and Pp =1 [O(6) symmetry]; and Pp =0 or
Pp ~ [U(5) symmetry].

The solvable states corresponding to the partial SU(3)
symmetry at Pp =J2 are obtained by angular momentum
projection from the following states with N bosons:

~k) ~ (P ) "[(st+J2dp)/J3] '"~0). (4)

I(N, I) =F(1)/N2,

where

(6)

(,144/(12 —181+71 ), 0(l (1,
144/(2 —I) ', 1 ( I (2. (7)

Thus, at a given l, the fraction of solvable states decreases
like 1/N with boson number. However, at a given boson
number N, this fraction increases with l. We emphasize
that Eqs. (6) and (7) are valid only in the limit of very
large N. However, the feature that F(1) increases with I
is true even for finite N.

For a given integer k )0 the states in (4) are eigen-
states of the Hamiltonian (2) with eigenvalues EI,
=3h2k(2N+1 —2k). An eigenstate ~k) is a lowest
weight state in the SU(3) representation (2N —4k, 2k).
The states in (4) do not have good angular momentum L
but do have well defined angular momentum projection K
along the symmetry z axis. They represent intrinsic
states of the ground band (k =0) and excited y-

vibrational bands (k & 0) of a prolate nucleus. States of
good angular momentum

~
(2N —4, 2k );K =2k, L,M) can

be projected from the states in (4). Since the projection
operator is constructed from O(3) generators, it com-
mutes with the rotation invariant Hamiltonian in (2) so
that the projected states are also eigenstates of H when

Pp =J2. Furthermore, since O(3) is a subgroup of
SU(3), these projected eigenstates retain the SU(3) char-
acter of the parent intrinsic state (4).

The number of solvable states for a given spin L and
boson number N is

( [L/2] + g ) (2L + 1 ), 0 (L (N,
(5)

[[(2N L)/21+ qj (2L+—I ), N (L (2N,
with ri= 1 for L even and ri=0 for L odd. [x] is the in-

teger smaller than or equal to x. There are no states in

the model with L & 2N, and the 2L+1 factor in (5)
arises from the usual M multiplicity for a given L. It is
also possible to estimate [13] the total number of states
for a given choice of' N and L.

To leading order in 1/N the fraction fof solvable states
as a function of the spin per boson l is

The classical limit of (2) is obtained [8,14, 15] through
the use of coherent states parametrized by the six com-
plex numbers [a„a„;p= —2, . . . , 2j and taking N
The classical Hamiltonian is then obtained from (2) and
(3) by the substitution st, d„~ a,*,a„* and s,d„a„a„
and rescaling the parameters h; Nh; (I =0,2). Notice
that 1/N plays the role of h.

To study the eA'ect of the SU(3) partial dynamical
symmetry on the dynamics, we fix the ratio h2/hp at a
value far from the exact SU(3) symmetry (for which

hq/hp =2) and far from the other symmetry limits of the
Hamiltonian. We then change Pp in the range
1 (Pp( 2. Classically, we determine the fraction cr of
chaotic volume and the average largest Lyapunov ex-
ponent [14] K. To analyze the quantum Hamiltonian, we

study spectral and transition intensity distributions [16].
The nearest neighbors level spacing distribution is fitted
by a Brody distribution P„(S)=AS"exp( —aS'+ ),
where A and a are determined by the conditions that
P (S) is normalized to 1 and (S)=1. For the Poisson
statistics co =0 and for the GOE co =1, corresponding to
integrable and fully chaotic classical motion [17,18], re-
spectively. The intensity distribution of the SU(3) quad-
rupole (E2) operator,

T' ~ ~ (dtxs+stxd)'2' — (dtxd)„"',

is fitted by a g distribution in v degrees of freedom [19],

(8)

P,(y) = [(v/2(y)) '~ /I (v//2)]y'~ 'exp( —vy/2(y)) .

For the GOE, v= 1 and v decreases as the dynamics be-
comes more regular [20].

Figure 1 shows the two classical measures o,k and the
two quantum measures ro, v for the Hamiltonian (2) as a
function of Pp. The parameters of the Hamiltonian are
taken to be hq/hp=15 and the number of bosons is

N =25. Shown are three classical spins I =0.08, 0.4, and
1 which correspond in the quantum case to L =2, 10, and
25. All measures show a pronounced minimum which

gets deeper and closer to Pp= J2 [where the partial
SU(3) symmetry occurs] as the classical spin increases.
This behavior is correlated with the fraction of solvable
states (at a constant N) being larger at higher I. The
strong dependence on l seen in Fig. 1 is in contrast to the
weak dependence of chaos on I (for I ( 1) observed in

other regions of the interacting boson model [14,16] pa-
rameter space. We remark that the classical measures
show a clear enhancement of regular motion near Pp =J2
even though the fraction of solvable states vanishes as
1/N in the classical limit N

To confirm that the observed suppression of chaos is re-
lated to the SU(3) partial dynamical symmetry we em-

ploy the concept of an entropy [21,22] associated with a
given symmetry. To determine the SU(3) entropy, we

expand any eigenstate ~aLM) in an SU(3) basis

i(k, p)KLM),
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FIG. 1. Classical (o,X) and quantal (ro, v) measures of chaos
versus Po for the Hamiltonian (2) with hq/ho=15. Shown are
three cases with classical spins I =0.08, 0.4, and 1. The quantal
calculations (ru, v) are done for N =25 bosons and spins L =2,
10, and 25, respectively. Notice that with increasing spin the
minimum gets deeper and closer to Po= J2. The suppression of
chaos near Po=&2 is seen both for finite N through the mea-
sures m, v and in the classical limit N ~ through the mea-
sures o,k.
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FIG. 2. The average SU(3) entropy of the eigenstates of the
Hamiltonian (2) (for h2/ho=15) versus Po, for three values of
the spin (per boson), l =0.08, 0.4, and 1. Left: N =15 bosons;
right: N =25 bosons.

I~LM)= Z «",„&~l(~,p)«M). (9)
(Z,~),K

Denoting by pq„'I the probability to be in the SU(3) irrep
(k,p)

(a) g I

(a)
le

K

the SU(3) entropy of the state laLM) is defined as

S(tJ'( ) = —gp "lnp"

(10)

The entropy vanishes when the state has a good SU(3)
symmetry. The averaged entropy (SsUt31) over all eigen-
states is then a measure of the global SU(3) symmetry.
This quantity is plotted in Fig. 2 versus Po for N =15 and
25 and for the same spin values (per boson) I as in Fig. 1.
We observe a minimum which is well correlated with the
minimum in Fig. 1. The maximum SU(3) entropy is the
logarithm of the number of allowed SU(3) irreps for the
given N and L. The average SU(3) entropy therefore in-
creases with N. The depth of the minimum increases
with N and l although the fraction of solvable states is
smaller at N =25 than at N =15 by a factor of about 3.
The existence of an SU(3) partial dynamical symmetry
seems to have an eff'ect of increasing the SU(3) symmetry
of all the states, not just those with an exact SU(3) sym-
metry.

To summarize, we have considered the efIect of partial
symmetry of a Hamiltonian on the nature of the underly-

ing dynamics. The symmetry under consideration is ex-
act but is shared by only some of the quantum eigen-
states. We have demonstrated that partial dynamical
symmetry can suppress chaos even when the fraction of
exactly solvable states vanishes in the classical limit. In
general, most systems exhibit coexistence of regular and
irregular motion. Hamiltonians with partial symmetries
can play an important role in understanding this coex-
istence as well as shed light on the important problem of
the inAuence of a symmetry on the interplay between or-
der and chaos in dynamical systems.
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