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We show how observations of the density perturbation (scalar) spectrum and the gravitational wave
(tensor) spectrum allow a reconstruction of the potential responsible for cosmological intlation. A com-
plete functional reconstruction or a perturbative approximation about a single scale are possible; the suit-
ability of each approach depends on the data available. Consistency equations between the scalar and
tensor spectra are derived, which provide a powerful signal of inflation.
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One of the most exciting aspects of the recent detection
of large angle microwave background anisotropies by the
Cosmic Background Explorer satellite (COBE) [11 is the
possibility that part of the anisotropy observed is due to
long wavelength gravitational wave (tensor) modes in-

stead of (scalar) density perturbations. In general the
influence of scalar and tensor modes on microwave back-
ground anisotropies differs as a function of angular scale,
and the use of measurements on different scales may al-
low one to separate the anisotropies into their scalar and
tensor components. This has recently been considered by
Crittenden et al. [2].

This prospect is especially exciting for models of
cosmological inllation, proposed over a decade ago [3] as
a possible resolution of a number of otherwise puzzling
aspects of the standard hot big bang cosmology [4].
Inflation has long been known to predict that both scalar
modes [5] and tensor modes [6-8] should exist on all as-

trophysically relevant scales. Although the generic pre-
diction from inflation has in the past advertised as a flat
(Harrison-Zel'dovich) scalar spectrum and a tensor spec-
trum of negligible amplitude, the rapid improvement of
observational data has led many researchers [9] to em-

phasize recently the importance of taking the detailed
inflationary predictions seriously. Typically the predic-
tions from inflation are that the scalar spectrum possesses
a scale dependence, which is weak in many models but
can be rather marked in others. And though the ampli-
tude of tensors may typically be less than that of the sca-
lars, this does not necessarily imply that it is negligible.

This is problematic from a large-scale-structure view-

point, since different inflationary models offer a range of
predictions and there is currently no clear guidance from
particle physics as to which inflationary models may be
suitable. The correct input one should make into a large
scale structure model is therefore unknown. However,
from an inflationary viewpoint this is a promising feature,
as it raises the possibility that improved observations may
allow one to distinguish between inflationary models.
The aim of this Letter is to investigate the use of observa-
tions precisely to this end, by deriving equations which al-

(H')' —-', ~'H'= ——,
' ~'V(y),

ic P= —2H', (2)

provided that p does not pass through zero, where over-
dots are time derivatives, primes are derivatives with
respect to 111, and tc =8trG =8tr/mp~. The usual slow-roll

low one to proceed from a knowledge of the scalar and/or
tensor spectrum to a determination of the inflaton poten-
tial. As a very useful by-product, we derive a consistency
relation between the allowed scale dependences of the
scalar and tensor modes. This is a powerful discriminant
for inflationary models in general, as it does not depend
on a specific choice of inflationary model.

Reconstruction of the inflaton potential in this manner
was first considered by Hodges and Blumenthal [10]
(hereafter HB). We improve upon their results in two
important ways. First, we consider both scalar and tensor
modes, whereas they restricted their study to the scalars
alone. This is a vital improvement, because, as HB ac-
knowledged and we rederive, the scalars alone are
insufficient to uniquely determine the inflaton potential—such a reconstruction is possible only up to an undeter-
mined constant, and as the reconstruction equations are
nonlinear this leads to functionally different potentials
giving rise to the same spectrum. The tensors (even just
the tensor amplitude at a single scale) provide just the ex-
tra information needed to lift this degeneracy. Second,
their analysis made explicit use of the so-called slow roll-
approximation. It is well known that this approximation
breaks down unless both the scalar spectrum is nearly flat
and the tensor amplitude is negligible. We consider the
inflation dynamics in full generality. However, general
expressions for the perturbation spectra are not known,
and one must use the slow-roll approximation there. It is
shown in another paper [11] that this hybrid approach
offers substantial improvements over pure slow-roll re-
sults.

The equations of motion are most conveniently written
in the H(p) formalism [12]. An isotropic scalar field p in

a spatially flat universe satisfies
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AG(y) =
( H(y), (4)

respectively. Ag is equivalent to P'~ (k)/342m in HB, to
BH of Ref. [13], and for a flat spectrum equal to 4xe~ of
Ref. [7]. Ao is equivalent to Pg/32m of Ref. [13]. One
immediately notes that

Ag

&s
w2 ~H'~ J2 dl»G

H ic dp
(5)

so the inflationary condition a & 0 implies
However, the relative contribution of tensors to scalars
for large angle microwave background anisotropies is
given roughly (for sufficiently flat spectra) by the ratio
25AG/2Aq [11], so it is possible for the tensor contribu-
tion to dominate the anisotropy.

The spectra are quoted above as functions of p—that
is, we are given the amplitude when the scalar field takes
a particular value. To compare with observations we
must relate p to a given cosmological scale X. This is
achieved by utilizing the formula

W(y) —= H(t')dr'=—
"i' H(y') d,

2 ~ H'(y')

which gives the number of e-foldings between a scalar
field value p and the end of inAation at p=p, . Each
length scale A, is associated with a unique value of p when
that scale crossed the Hubble radius during inAation, in-
dicated by writing X(p). That value of p is also associat-
ed with a value a(p) of the scale factor. We can make
use of Eq. (6) to relate a(p) to the value of the scale fac-
tor at the end of inAation, a, : a(p) =a, exp[ —N(p)],
which allows us to express k(p) as

„( ) exp[N(y)] &o

H(y) a,
DiA'erentiating Eq. (7) with respect to p yields

(7)

dX(y) ~ x &s
dy ~2 Wo
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&s

(8)

Note that the reconstruction equation derived by HB
[their Eq. (2.10)] has only the first term on the right-
hand side of Eq. (8), indicating their assumption of
slow-roll behavior (which here amounts to neglecting
terms of order AG/Ag).

Substituting Eq. (8) into Eq. (5) gives

dAG(x) AG'(k)

&a (&) d& As2(k) —AGz (k)
(9)

approximation amounts to neglecting the first term in Eq.
(1) and its p derivative.

The amplitudes of the scalar and tensor modes may be
written using the standard expressions as

( )
&2'' H'(y)

This is a very important equation, because it is valid for
any inflation potential and indicates a strong connection
between the forms of the scalar and tensor spectra pro-
duced by inflation. The left-hand side is essentially just
half of the (scale-dependent) spectral index of the tensor
spectrum. Potentially, this provides a powerful discrimi-
nator as to the correctness of inflation. We shall refer to
it as the consistency equation.

It highlights the asymmetry in the correspondence be-
tween the scalar and tensor spectra. If one were given the
tensor spectrum, then a simple diITerentiation supplies the
unique scalar spectrum. However, if a scalar spectrum is

supplied, then this first-order differential equation must
be solved to find the form of AG(k). This leaves an un-

determined constant in the tensor spectrum and, as the
consistency equation is nonlinear, this implies that the
scalar spectrum alone does not uniquely specify the func-
tional form of the tensors. However, knowledge of the
amplitude of the tensor spectrum at one scale is sufhcient
to determine this constant and lift the degeneracy.

It is the tensor spectrum one requires to proceed with
reconstruction. Once the form of the tensor spectrum has
been obtained, either directly from observation or by in-

tegrating Eq. (9), the potential, as parametrized by X,

may be derived by substituting Eqs. (3) and (4) into Eq.
(1). This gives

16~'~,'(~) ~,'(~)
(10)

where the final term in the square brackets again im-

proves on HB. Finally, integration of Eq. (8) yields the
function p =p(A, ) as

y(k) = ~ Ag (X')Ao (X')
~' As2(X') —&G(&')

»G, As[kG]
dA6

K

where we have absorbed the integration constant by tak-
ing advantage of the freedom to shift p by a constant.
The second integral follows after substitution of the con-
sistency equation and is appropriate if the functional
form of As as a function of Ag is known. The functional
form of V(p) follows by inverting Eq. (11) and substitut-
ing the result into Eq. (10).

The reconstruction equations are Eqs. (9), (10), and
(11). We emphasize again that even an arbitrarily accu-
rate determination of the scalar spectrum will not allow
one to determine the inflaton potential —at least a
minimal knowledge of the tensors is required. Ultimate-
ly, though, one might hope to overdetermine the problem
by having observational knowledge of both spectra over a
range of scales. The consistency equation (9) must then
be satisfied, or the inflationary hypothesis has been dis-
proved (up to the accuracy of the slow-roll approximation
for the perturbation spectra).
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The reconstruction equations allow a functional recon-
struction of the inflaton potential. For suitably simple
spectra, this can be done analytically, and in another pa-
per [11]we illustrate this for the well-known cases of sca-
lar spectra which are exactly scale invariant, logarithmic-
ally corrected from scale invariance and exact power
laws. The earliest observations with an accuracy useful
for our purposes are likely to only provide such simple
functional fits. For advanced observations, however, one
might expect that the reconstruction equations would
have to be solved numerically. There are additional is-
sues related to observational errors which we do not in-

vestigate here (but see Ref. [11]).
An alternative approach, useful for obtaining mass

scales, is to concentrate on data around a given length
scale ko, and perturbatively derive the potential around its
corresponding scalar field value pp

——p(kp). If we know

AG(kp) and As (Xp) separately, then V(pp) follows im-

mediately from Eq. (10). In order to make further pro-
gress, one also needs information regarding the deriva-
tives of the spectra. Of course, the measurement of these
derivatives requires knowledge of the spectra over at least
a limited range of scales, so this process is equivalent to a
Taylor expansion of the functional reconstruction [14].

To obtain V'(p), one needs only the derivative of the
scalar spectrum, or equivalently its spectral index. This is

fortunate, as its tensor equivalent would be much harder
to observe. With the scalar spectral index n (in general a
function of scale) defined as usual by

d inc,'(X)
1
—n=

d ink
one can show that

d V(p) 16n' &G (~o)
V'Po —=

~s (~o)

(i 2)

AG(kp)x 7 —np (5 —no)

(i3)
where n(Xp)= np If one—wis. hes, this can be simplified
into the slow-roll approximation (in which np= 1) by ig-
noring the final term in the square brackets.

One can continue this process. At no stage is

knowledge of the tensor spectrum derivative required, be-
cause the consistency equation can always be used to re-
move it. Given the second derivative of the scalars
(equivalently the first derivative of the scalar spectral in-

dex), one can derive an expression for V"(Pp), quoted in

Ref. [11],but it is too cumbersome to reproduce here. Its
slow-roll limit does not require no, and is

V,'„'(Pp) =
2 2

[4(np —4) Ao(kp)
4~' AG'(kp)

—(1 —np) (7 —np) Ag(kp) 1 .

(14)
This off'ers the prospect of determining whether the

inflaton potential is concave or convex when the presently
observable universe crossed outside the Hubble radius
during inAation. We note immediately that V" is positive
if 1 & no & 7. It is the amplitude of the tensor perturba-
tions at a particular scale which yields information re-
garding the mass scale at which these processes are
occurring during inAaton. The steepness of the potential,
measured by the dimensional parameter V(go)/I V'(Oo) I

is determined by the ratio Az(kp)/AG(kp).
Let us illustrate by example. Within a few years a

combination of microwave background anisotropy mea-
surements should give us some information about the sca-
lar and tensor amplitudes at a particular length scale Xp

(corresponding to an angular scale Op) [2]. A hypotheti-
cal, but plausible, data set that this might provide would
be As(kp) =I x10; AG(kp) =2x10; np=0. 9. This
would lead to

V(yo) =(2x10' GeV)

+ V'(yp) =(3x10' GeV)

V,",(yo) = (5 x 10' GeV)

(15)

In this way cosmology might be first to get a "piece of the
action" of physics at the grand unification scale.

In this Letter we have discussed the promising possibil-
ity of large scale structure observations, particularly of
tensor modes, providing rather specific information as re-
gards the physics of the grand unified era. We have de-
rived equations which allow a knowledge of either the
scalar spectrum, the tensor spectrum, or preferably both,
to be used to reconstruct the potential of the inAaton
field. We have also noted a consistency equation, by
which the scale dependences of the spectra must be relat-
ed if their origin lies in an inAationary era. This poten-
tially provides a powerful test of inflation; the minimum
knowledge required to implement it would be knowledge
of the scalar spectrum across a range of scales plus the
amplitude of the tensor spectrum at t~o of the wave-
lengths. [Technically the minimum is the tensor spec-
trum plus the scalar amplitude at a single scale, but ob-
servationally that would be considerably more demand-
ing. ]

While the technical aspects of reconstruction are in-
teresting, the practicality of such a program is the main
concern. A variety of observations are available to allow
this to proceed. The only means likely to yield informa-
tion on the tensors is large and intermediate angle mi-
crowave anisotropy measurements [2]. However, we have
emphasized that one only needs a measurement of the
tensors at a single scale to reconstruct. For the scalar
modes we have the entire slew of large scale structure ob-
servations to consider, including the distribution of galax-
ies, peculiar velocity flows, and the formation times of
high redshift objects. There is not enough space to em-
bark on a detailed discussion here, but all these issues,
covering both the present and prospective observational
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situation, are discussed in depth in another paper [11].
In that paper we also investigate other aspects of this

paper in more detail, including examples of functional
reconstruction. While the ambitious aim of full recon-
struction appears to lie some way into the future, we are
optimistic as to the short-term possibilities, as tantalizing-
ly indicated in [2], of obtaining at least a perturbative
reconstruction of the inflaton potential and a window on

grand unification scale physics.
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