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Prebifurcation Periodic Ghost Orbits in Semiclassical Quantization
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Classical periodic orbits are stationary-phase points in path integral representations of quantum
propagators. We show that complex solutions of the stationary-phase equation, not corresponding to
real classical periodic orbits, give additional contributions to the propagator which can be important,
especially near bifurcations. We reveal the existence and relevance of such periodic ghost orbits for
a kicked top.

PACS numbers: 03.65.Sq, 05.45.+b

For a time-independent Hamiltonian system, the quan-
tum propagator can be represented by a Feynman path
integral [1]. Its semiclassical version arises from a
stationary-phase approximation. The path integral is
then dominated by contributions from classical orbits
since these render the phase of the integrand station-
ary. In particular, classical periodic orbits determine,
as 5 ~ 0, the trace of the propagator and the energy
spectrum [2]. Similarly, for periodically driven systems,
the spectrum of quasienergies is accessible through the
traces TrF" where F, the so-called Floquet operator, is
the single-period propagator and n an integer counting
the number of periods of the driving. In the limit h —+ 0,
the nth such trace is determined by classical orbits of
period n [3].

The stationary-phase equation for the path integral
may have nonphysical solutions not corresponding to real
classical orbits. The ghost solutions we have in mind do
not live in the classical phase space, but rather in a space
arising from the latter by complexification of coordinates
[4]. Such complex periodic orbits have complex actions
S = S' + iS". Their contributions to the path integral
involve the factors exp[i(S'+ iS")/h] which for S" ) 0

become negligibly small in the semiclassical limit h ~ 0.
It is precisely due to their asymptotic loftiness that these
ghosts usually do not even deserve mention. However, for
not too small h, their contributions to the quantum prop-
agator may become important. Furthermore, in any sit-
uation where a ghost orbit has a small imaginary part of
the action, its contribution becomes lofty only for rather
small values of h. On the other hand, observe that the
vanishing of the imaginary part of the action of such a
complex orbit would lead to a nonvanishing contribution
to the propagator even in the limit 5 ~ oo which invali-
dates standard semiclassical quantization involving only
real orbits.

Imagine, for example, a system undergoing a bifurca-
tion when a control parameter k is varied: below some
critical value k„a periodic orbit ceases to exist. The lost
orbit might survive as a complex ghost for k & k„whose
imaginary part of the action S" tends to zero as the ghost
approaches reality with k —+ k, from below. As a pre-
cursor of a classical orbit, the ghost then makes a contri-
bution to the propagator not contained in the standard
semiclassical approximation. Such a phenomenon is par-
ticularly important close to a tangent bifurcation where
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the map (2) being real leads to real values of actions S(n)
for real solutions of the fixed-point equations, as is shown
in Ref. [10]. Clearly, the Fourier transform of TrF" with
respect to j = 1/5,

two periodic orbits bifurcate from no periodic orbit at
all.

The complex actions of our ghosts are reminiscent of
semiclassical treatments of tunneling phenomena —which
also give "exponentially small" corrections to the stan-
dard semiclassical approximation as h ~ 0 and of the
complex free energies encountered in first-order phase
transitions [5]. Classically forbidden orbits are also en-

countered in semiclassical collision theory [6], especially
in the context of the so-called rainbow scattering [7]. We
should mention the "generalized Gaussian wave packets"
which have proven convenient for describing semiclassical
dynamics [8].

We have been led to contemplate complex precursors
of real periodic orbits following a semiclassical analysis
of a kicked top which we must briefly recapitulate [3,9].
The dynamical variables of that top are the components
of an angular momentum J which obey the commutation
rules [J~, J„]= i J„etc. The squared angular momentum
J2 = j(j + 1) is conserved. The quantum number j
fixes the dimension of the Hilbert space as 2j + 1. The
semiclassical limit is obtained with j —+ oo and 1/j can be
considered as our effective h. The stroboscopic quantum
dynamics of the top is generated by the Floquet operator

(4)

will exhibit peaks of location a = S(")(mod 2~), height
A("), and width of order 1/M. To check on the accuracy
of the semiclassical approximation for the traces TrF"
and the T„,one may compare it with the exact quantum
result obtained by representing the Floquet operator as
a (2j + 1) x (2j + 1) matrix. Any discrepancies between
the quantum and the semiclassical T„are expected to
disappear as j0 increases.

The following surprise arises, as was first realized but
not conclusively explained in [10]. In some ranges of
the control parameter k, the (Fourier transformed) traces
T„(w; jp, M) come out practically identical from the semi-
classical and quantum calculations, even for j0 down
to unity. However, in other ranges of k, some quan-
tum T„(w; jp, M) differ significantly from their semiclas-
sical approximants by exhibiting one or several additional
peaks not corresponding to any real classical periodic or-
bit [see Fig. 1(a)]. In contrast to the peaks associated
with real orbits, the additional "quantum peaks" have

~k J2j z ~ 2 y
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For k )& 1, the classical dynamics is globally chaotic.

By using coherent states and the standard semiclas-
sical technique (j = 1/h » 1), one can express the
traces TrF" in terms of periodic orbits of period n of
the map (2). As pointed out above, these periodic orbits
appear as solutions of a stationary-phase equation. The
resulting semiclassical structure is, as usual,
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FIG. 1. Fourier transformed trace Ti(w; jp = 1, M = 100)
of the Floquet operator of the kicked top for various values
of the control parameter k: (a) below k, = 12.73 with a
ghost peak at cu = 0.51 and three peaks corresponding to real
periodic orbits; (b) slightly above k, where the highest peak
corresponds to an unresolved doublet due to two real periodic
orbits; and (c) sufficiently far above k, where the doublet is
resolved.

&(~) ijs&")(TrF")„=
periodK: orbits

where the S&"~ and the A~"~ are, respectively, the actions
and amplitudes (related to stability properties) of the
periodic orbits, independent of j. It is to be stressed that
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This accounts for a rotation by vr/2 about the y axis
followed by a nonlinear torsion about the z axis with
strength k. The classical version of the kicked top has
the sphere lim~ J /j(j+ 1) = 1 as its phase space.

We specify the classical stroboscopic dynamics using a
pair of stereographic projection coordinates x, y related
to the spherical coordinates 8, y by x+ iy = e'& tan(8/2).
The classical stroboscopic dynamics then takes the form
ofamapx, y~X, Y,
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FIG. 2. Exponential decay with jo (with M = 100 fixed)
of the height of the ghost peak at w = 0.51 in Fig. 1(a).

FIG. 3. Graph of the fixed-point equation (5) for
k = k, = 12.73, k ) k„k ( k„ in the latter case (5) still
allows for complex ghost solutions.

kx
G(x, k) = Ql + 2x —x2 tan = +x,

2(l + x)

y = +v'I + 2x —x'
(5)

Figure 3 depicts graphs of G(x, k) and kx versus x.
A tangent bifurcation arises when one of the straight
lines touches the curve G(x, k) tangentially, i.e. , for
clG(x, k)/Ox = 1. Such is the case for k, = 12.73, x, =
2.09, y, = 0.90. As is obvious from Fig. 3, the degener-
ate fixed point found for k = k splits into two real ones
for k ) k, but has Bed reality for A: ( k, . Instead, for
k = 12 we incur two pairs of complex (ghost) solutions
x = 2.24+i0.78, y = 1.28~i0.75 and x = —0.42¹i0.02,
y = 0.18 + i0.19. In order to And the ghosts' complex
actions, we invoke the action S(x, y, k) of the kicked top
from [10],

v i . ~2(l + xz + y2) k

(I + vp (1+v)(1 —x —iy) 2'

where the auxiliary function v(x, y, k) is defined implic-
itly by

1 —v (x —iy)(l + x+ iy)
v exp —ik~ ~

~

~1+v 1 —x —iy

a height decreasing exponentially with increasing jii (see
Fig. 2). Part of the surprise, in fact the better one, lies
in the persistence of the quantum peaks up to fairly large
values of j0. Figure 2 reveals that the quantum peak in

Ti(w; jp, M) for k = 12 has split into two separate peaks
at k = 14, both associated with real classical Axed points.

We could formally reproduce quantum peaks by as-
suming a term in the periodic-orbit sum (3) with a com-
plex action S = S'+iS". For the case in Figs. 1 and 2 we
would need S = 0.51+0.022. This is why we found our-
selves pushed to search for ghosts, fixed points (n = 1)
of the complexified version of the map (2). These can be
shown to obey

This gives S = 0.51 + 0.02i for both pairs of ghost
solutions, the degeneracy being due to a symmetry of
the kicked top [9]. Of physical relevance are the ghosts
with positive imaginary parts of their action. It is quite
satisfactory to recover in the real part S' = 0.51 the
location of the quantum peak of Fig. 1(a) and in the
imaginary part 8" = 0.02 the decay rate of the height
of the quantum peak with j0 from Fig. 2. In fact, if we
admit these ghosts to the periodic orbit sum (3) we gain
a nearly perfect reproduction of Fig. 1(a) for k = 12.
Moreover, expanding the fixed-point equations (5) and
the action (6) in powers of k —k„x —x„y —y, we find
the ghosts to imply Im(x —x,) oc (k, —k) iz and S" oc

(k, —k)si . It is the exponent 3/2 in the latter power
law that renders the ghost visible in quantum features
like Ti(u) still rather far from the bifurcation and for
rather large values of j = I/O.

When k approaches the critical value k, from either
above or below, the contribution of the real fixed points
(above) and the ghosts (below) to Ti(w) blows up, as is
visualized in Fig. 4. Clearly, this failure of the saddle-
point integration is due to its restriction to quadratic
fluctuations around the saddle point in the Feynman type
integral representing TrF.

It is well known [ll] how an improved semiclassical
approximation can be constructed close to a tangent bi-
furcation. One must look more closely at the Feynman
type integral,

with the action (6); the prefactor A(x, y), independent of
j, has been given in [10]. At the critical point (x„y„k,)
of a tangent bifurcation, the matrix of second derivatives
of S(x, y) has one vanishing eigenvalue and thus implies

divergence of the integral in (8) unless (at least) cubic
terms in the expansion of S in x —x„y —y, are kept.
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FIG. 4. Height of the quantum peak versus k near k, .

Pull curve: exact quantum mechanics; dotted: semiclassics of
Airy type, Eq. (10); dashed: ghost approximation (k ( k, );
dash-dotted: standard Gutzwiller approximation (k ) k,).

After a suitable coordinate change 2: —x„y—y, —+ q, p
the action in (8) takes a certain normal form. In one of
the new integration variables, say p, the action retains a
finite quadratic piece even at k = kc. Upon doing the
usual saddle-point integral over p, we are left with

S(q) = So(k) + (k —k, )Siq+ s Ssq,

where Si and Ss can be expressed in terms of deriva-
tives of S(x, y) with respect to x, y, k up to order 3.
The saddle points of the remaining q integral, q
+VI(k, —k)Si/Ss, reproduce the fixed points (real for
k ) k„ghosts for k ( k, ) close to the bifurcation. In
constructing the above normal form S(q) one keeps all

terms of weights up to (k —k, )spaz, counting q as of order

(k —k, ) I . By this self-consistent procedure, a quadratic
term (k —k, )Szq in S(q) can be dropped since it is out-
weighed by the cubic term Ssq /3. The new prefactor
A(q) then results from A(x, y) as a power series in q and

(k —k, ), independent ofj. If we replace A(q) by its value
at q = 0, k = k„our trace takes the form of an Airy
function,

TrF =2vrA(0)Ss I j I Ai[SiSs I (k —k, )j I
] (10).

tion rather than the standard Gutzwiller or ghost ones,

as Ak = Ss Si j I . For larger values of ~k —k, ]
the

standard Gutzwiller or ghost formulas give equally good
approximations to the exact result as the Airy type one,
which can be also formally proved using the well known

asymptotic form of the Airy function as it is known

from the pioneering works of Berry and Upstill and later
of Ozorio de Alrneida and Hannay [ll] on catastrophe
diffraction integrals.

Let us sum up. Complex periodic ghost orbits with
small imaginary parts of their actions show up when

control parameters are steered close to bifurcation val-

ues. They are observable as quantum peaks in (Fourier
transformed with respect to I/h) traces of propagators.
For all bifurcations except those of tangent type, real
periodic orbits whose action is very close to the one of
the ghosts exist on both sides of the bifurcation. The
corresponding peaks will then generally hide the ghost
contributions. This is why the tangent bifurcation is the
easiest one to observe ghosts. Nevertheless, a quantum
peak has recently been experimentally observed in high-
resolution spectra of the He atom in a magnetic field [12];
we now understand this peak as due to a ghost related
to a 1:5 resonance bifurcation.

When complex ghosts visit, conventional semiclassical
quantization is in jeopardy. Fortunately, by simply in-

cluding the ghosts in all stationary-phase integrations,
the validity of semiclassical approximations can be im-

proved, i.e. , extended to larger effective h.
Many questions are raised by the finding reported here.

The frequency of appearance of ghosts must be investi-
gated: one might argue that when dealing with long pe-
riodic orbits, one is always close to a bifurcation. The
inclusion of ghosts might improve chances to obtain, say
for the kicked top, reasonable approximations for the
quasienergy spectrum at not too large values of j.
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This regularizes the divergence of the naive saddle-
point integral. By Fourier transforming according to
(4) we have obtained the dotted curve in Fig. 4 which
nicely Gts the exact quantum result for k = k, and thus
interpolates between the ghost contribution below and
the periodic-orbit one above the bifurcation. This in-
terpolation could be improved by retaining the power
series for A(q) which yields additive corrections to (10)
involving derivatives of the Airy function. From (10)
or Fig. 4, we can estimate the interval Ak around k,
within which one must use the Airy type of approxima-
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