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Vortex-Antivortex Crystallization in Thin Superconducting and SuperAuid Films
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A new scenario, based on crystallization of oppositely charged vortex™antivortex pairs into a 20 ionic
crystal, is proposed for the transition in thin superconducting films with high pair density. We also dis-
cuss possible melting of this crystal and the emergence of dissipation. This model is also shown to apply
to superAuid He films in cases where the energy to create a vortex is reduced.
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While the Kosterlitz-Thouless (KT) transition [1] has

been accepted as pertinent for neutral superfluids such as
liquid He films, its applicability for superconducting films

was first suggested by Beasley, Mooij, and Orlando [2].
They noted that for a 2D superconductor the relevant
penetration depth is A=X /1, which can be as large as a

typical sample size; hence vortices in very thin supercon-
ductors interact logarithmically for all distances (here X

is the London penetration depth and d is the thickness of
the film). Thus, the necessary ingredient for the forma-
tion of the topological defects of the KT theory is

satisfied. The most striking feature of the KT theory is

the universal jump stating that the ratio of the superfluid
density to the KT transition temperature is universal, i.e.,
ktt TKT = 1/2(@0/4tr) /A(TKT) [3]. Although the general
features of the KT transition were observed in supercon-
ducting films, the universal jump was observed only in

isolated cases, mostly for granular systems, while dis-

crepancies were found whenever a homogeneous system
with large penetration depth was studied [4]. To over-

come this diSculty, a dielectric constant e that renormal-
izes the charge of the vortices has been invoked. In re-
cent experiments on YBa2Cu307 [5] and MoGe [6] thin

films, t. was found to be more than 5, a very large
enhancement that in principle invalidates the applicabili-
ty of the vortex-antivortex unbinding KT theory. In none
of these systems has any hysteretic behavior or any other
indication for a first order transition been found. Al-

though it is acceptable that the background of vortex-
antivortex pairs will polarize the medium for any specific
pair, and hence an introduction of e is needed, this effect
should disappear when the universal ratio is considered.
This is because the KT theory is a low density theory,
manifested by an e =1 fixed point (in other words, the re-
normalized fugacity is zero at the transition) [7]. In fact,
we claim that the conditions to observe a KT transition in

superconducting films in the way suggested by Beasley,
Mooij, and Orlando [2] are almost never met. Instead, in

this dense state a crystallization of the vortex-antivortex
fluid into an "ionic" crystal is inevitable, resulting in the
true zero resistance superconducting state. The resistive
state is then achieved by melting of the crystal presum-
ably via a new universal KT transition as a result of the
unbinding of dislocation pairs. %e expect our analysis to

equally apply to thin superfluid films.
The thermal energy needed to create a vortex is of or-

der. of the condensation energy. For a superconducting
film with a coherence length g, this energy is of the order
of E, =0.39(@o/4tr) /A [8]. A first clue to the under-
standing of the diSculties in applying the KT theory to
thin superconducting films arises if one calculates the
"critical" fugacity y, =exp( —E,/kttTrT). For a super-
conductor (with e = 1), we find y, =exp( —2 x 0.39)
=0.46. This is to be contrasted with superfluid He,
granular superconductors, or conventional XY ferromag-
nets [y, =exp( —6.47) =0.0015 [9]]. The consequence
of this diAerence is dramatic. It is the large fugacity
which implies high defects density at the KT transition
that prohibits us from using the KT theory in its straight-
forward form, thus requiring the introduction of a dielec-
tric constant. e can be estimated as a function of y using
the renormalization group (RG) approach [10]. Denot-
ing the polarizability and density of dipoles (i.e., vortex-
antivortex pairs) by a and n, respectively, one can find in

the dilute limit [11] e=i+2trna The corr.ection to e is

proportional to y, so that not too close to TKT, e = 1 for
ferromagnet or for films of superfluid He with an ex-
tremely good accuracy. In contrast, for superconductors,
dna is large and the dilute limit does not apply any more.
Thus, Minnhagen [10] has argued that in such a situation
RG analysis will give a nonuniversal jump at TKT or even
a first order transition. His prediction is that this should
occur when y exceeds a value y* =0.054. The corre-
sponding critical value ktt TKT/(@0/4tr) /A(TKT) = 0.144
implies a dielectric constant t. = 1.74, giving a correction
to the dielectric constant of order unity. Thus, in such a
case it is not clear that Minnhagen's equations hold at all.
A more accurate estimate of the dielectric constant needs
to take into account the fact that the local field is very
diA'erent than the external field, i.e., a strong polarization
limit. A better way to estimate e is by using the
Clausius-Mossotti formula [11] which for 2D gives
e = (1+trna)/(I —trna) Aprelim. inary RG analysis, us-

ing the above e and large y, shows a runaway from the
KT fixed point which may indicate the flow towards a
new fixed point that is consistent with the dense limit dis-
cussed here.

In conventional situations, the chemical potential F.,
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+exp( —0.78q /kaTe)

q2/kgTE 2—
where 8 is an effective dielectric constant. As shown by
Gilman [13], a dipole will trap another dipole if r —,6 .
It was then suggested by Li [14] that a row of such di-

ortex-
ntivortex
asma

needed to nucleate defects at T=0 is very large, typically
of the order of the mean field order-disorder transition.
Thus, below the KT transition, the thermodynamics of
the defect-antidefect pairs is essentially dominated by en-
ergy considerations. By contrast, in superconducting thin
films, A(0) is very large and, as a result, E, is small even
at T=0. A consequence of this is that TKT is not much
lower than the BCS T, . In that limit, many vortices will
be thermally generated below TgT and their thermo-
dynamics will thus be entropy dominated. For a situation
like this, we propose that vortex-antivortex dipoles will
crystallize and that the KT transition will be replaced by
a melting transition of tkis crystal at a new temperature
T* & TKT and most probably via the KT dislocation un-
binding transition. We propose further that upon cooling
the system below a yet lower temperature T„ the crystal
will sublimate into a gas of bound pairs wkich is identical
in structure to the "ordinary" KT phase for superAuids.
Figure 1 summarizes our proposal for the new phase dia-
gram. In this figure we also include the predicted hexatic
phase that separates the solid and the liquid phases [12]
although, as pointed out by Fisher [3], we expect its ob-
servation to be dificult experimentally.

Kosterlitz and Thouless [1] have estimated the average
size for vortex-antivortex pairs R =J(r ) '/ and the
mean separation R, between pairs. The fact that R
grows from rn —( to the size of the system (or infinity in

the thermodynamic limit) is clearly due to entropy. At a
given temperature T, for R not too large, we may define
the "trapping" probability as

z
R (1)
R,

poles will be formed below a temperature T„„satisfying
q /F ka T„„—4. 1. A similar eA'ect was suggested by
Sommerfeld in the context of the Von Karman vortex row
[15]. When these rows of dipoles are formed, they will
interact and the resulting structure will be obtained by
comparing the energies of the possible 2D solids. For
z —0.25, the corresponding structure is that of an ionic
crystal and it is obtained for q /ek&T; —3.2. Possible
groupings of the vortex rows yielding 2D structures are
shown in Fig. 2. If suck a crystal is formed, it will melt
via dislocation mediated transition a la KT. The chemi-
cal potential of a dislocation in this ionic crystal is given
by E, = ripb /2n, where r) = 2.33, p is the rigidity
modulus of the lattice, and b is the magnitude of the
Burgers vector, b =a J2 for a square lattice and b =aJ3
for triangular or hexagonal lattices [16,17]. The melting
temperature is given by the relation kaT* =p(T*)b /4z.
Note that the fugacity for the creation of a single disloca-
tion at this temperature is y-0.0095 and therefore the
corresponding melting transition may be universal.

The scenario we outlined above depends in a crucial
way on the actual potential between a vortex and its an-
tivortex pair in the dense phase. Although the pair poten-
tial energy is always attractive [10], temperature will sta-
bilize the crystal for T, & T & T* and an equilibrium lat-
tice parameter will only be found by minimizing the free
energy that includes the potential energy and phonon
contributions. Tke former is obtained by summing up the
two-body terms given in Ref. [10] over the lattice. At
large distances this self-energy of the structure y can be
calculated as a Madelung sum. For the row structures
we consider here, this energy depends on the angle be-
tween two successive dipoles (Fig. 2) in the row. If one
considers a dilute arrangement of rows, the straight rows
(180 ) are the most stable ones. When these rows are
put together densely to form the crystal, we have to recal-
culate the Madelung energies. We find y,q= —1.6155
for the square lattice and yt, = —1.36803 for the frustrat-
ed triangular lattice [18,19]. The phonon part is comput-
ed in a Debye approximation, given the linear dispersion
relation of lattice vibrations found below. Tke result of
our calculation is depicted in Fig. 3 where we plot the
bare free energy per vortex (in units of kg T*) as a func-
tion of a/( for various temperatures. A full derivation of

0

Q
]I
II

II

II

FIG. 1. The predicted phase diagram y is the bare fugacity
calculated at TKT. The thick solid line denotes the first order
sublimation transition. We mark the two possible scenarios of
transition depending on the initial fugacity. The thick dots
mark the relevant transition occurring as T is lowered. The
shaded area allows for a possible hexatic phase.

FIG. 2. The possible dipole groupings and lattices. (a)
Square, (b) triangular, and (c) hexagonal lattices.
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FIG. 3. Free energy of the vortex-antivortex solid (in units of
ksT*) vs lattice parameter (in units of () for temperatures
T/T* between 0.6 and 2. The lattice is unstable at low T/T*
(a/( = 1) and at high T/T* (no minimum exits).

the free energy which takes the self-consistent renormal-
ization of the phonon velocities into account will be given
in a separate publication. It shows indeed that a lattice
structure can exist in a range of temperatures between T,
and T*. The above argument implies that the short
range repulsion has to contribute to the lattice "spring
constant" and hence to p(T*). If we use the attractive
potential only, we can find a lower bound on T*. This
bound can be expressed in terms of the universal jump for
the low-density KT theory and it gives a 4z times larger
jump for the square lattice and a 4n/43 =7.25 times
larger jump for the triangular lattice.

We now turn to the calculation of the vibrational spec-
trum of the crystal and first consider the situation where,
in equilibrium, the velocity field due to all the lattice on a
single vortex (of any sign) is zero. The frustrated cases
will always yield some nonzero local current as will be
discussed below. Following Fetter and Hohenberg [20],
we denote the displacements of the lattice points as
uL

—(t) =s —expi(q rL
——cot) where + and — corre-

spond to positively and negatively charged vortices, re-
spectively. The velocity field of a vortex located at rL

is v(rL) =(—1) (K/2tr)(z xrt. )f(rL); K=h/2m is the
quantum diAusion constant. Note that the above equa-
tion will apply to a similar state in He films, if we write
K=h/mH, . The eigenvalue problem can be solved by
solving for the coefficients of s~—and s~

—for each type of
lattice. The exact determination of the modes depends on
the function f(r) which for our case contains the infor-
mation about the long range attraction and the short
range repulsion. In general we expect four modes corre-
sponding to transverse and longitudinal modes, each op-
tical or acoustic. In a continuum approximation where
we neglect the repulsive interaction, the transverse and
longitudinal modes, cor and coL, are degenerate [21].
However, beyond this approximation and including short
range repulsion and the existence of a lattice, these modes
have to split. Since the short range repulsion is obtained
with a Debye approximation we can only estimate the

splitting from the size of the jump at T*. The closer T*
is to the lower bound calculated above, the less is the
splitting. We may use the continuum approximation to
calculate the gap between the optical and acoustic modes.
Solving the equivalent equations as in Ref. [21], we find
two solutions:

col =
& nK[4e(e —1)+ 4 [) —e(2e —1)]q a J,

cozen
= —,

' nK[) elq —~az,
(2)

where the first is the optical branch and the second is the
acoustic branch. X =2 for the square lattice and X =3 for
the triangular lattice and n is the density of like type vor-
tices. In Eq. (2) (e —1) is the small parameter that
determines the gap [(e—1) =0 corresponds to the solu-
tion for only one type of vortices [20]]. By evaluating the
lattice sums to first order in q a we find (e —1)= 0.04
for the square lattice, but this parameter is zero within
the accuracy of the calculation for the triangular and
hexagonal lattices. The above analysis suggests that if
the short range interaction will be included, distinct lon-
gitudinal and transverse modes will be present but possi-
bly degenerate acoustic and optical modes. Such a pic-
ture is of course consistent with a Euler dynamics that
governs the motion of vortices. To determine the pre-
ferred lattice structure, it is easy to see that the square
lattice will not be stable against shear Auctuations since
its (1,1) direction contains the same charges in each row
[17]. The same applies for the triangular condenser [18]
and the hexagonal lattices. However, the frustrated tri-
angular crystal always has (+ —), (++ ——) arrange-
ments and their opposites for any lattice direction. This
ensures stability against shear Auctuations and against lo-
cal annihilations. For this lattice, e(Ty, ) =8tr/3. 2&3
—4.5. Taking again na —q (R/R, ) /2 we find that

' =0 for T((Ty„=T* and T„„.This means that t. is
very large in all the temperature ranges where melting of
the ionic crystal occurs. Note that for this lattice the mi-
croscopic velocity field is nonzero but pinning; boundaries
and domain formation will always ensure global zero lo-
cal velocity. The stability of the triangular arrangement
is further ensured by the coupling between the short and
long wavelength modes [191.

The consequences of our theory are rather dramatic. A
new phase diagram is predicted on the temperature axis.
Assuming a material with y &y*, we find that the How

will be towards the new, "crystalline" fixed point. How-
ever, as the temperature is lowered further, a new transi-
tion will occur to the ordinary KT phase with bound
vortex-antivortex pairs. The sublimation of the solid
phase at this T, temperature is expected to be a first or-
der transition since it reAects a gas-solid phase transition
when the density is varied. Recently, Lee and Teitel [19]
have carried out Monte Carlo simulations of the 2D neu-
tral Coulomb gas of integer charges on a triangular lat-
tice as a function of temperature and chemical potential.

2140



VOLUME 71, NUMBER 13 PHYSICAL REVIEW LETTERS 27 SEPTEMBER 1993

They indeed found a KT phase for low fugacities and an
ionic crystal phase at higher fugacities. The transition
between these two phases is indeed first order.

Our analysis above should also apply for the analogous
situation of liquid He films, in cases where the energy to
create a vortex is very low. Such an experimental realiza-
tion was recently investigated by Chen, Roesler, and
Mochel [22] where they studied thin He films on hydro-
gen. As in their experiment, we expect that a third sound
measurement will detect two modes corresponding to the
superAuid density and the elastic response of the vortex
lattice consisting of an admixture of the longitudinal and
transverse modes depending on the boundary conditions
of the experiment. It is interesting to note that such an
argument may suggest that in a dynamical measurement,
the superAuid density mode and the lattice modes will ap-
pear 90 out of phase from each other as a result of the
magnus force that governs the dynamics of the vortices.
Indeed, the two effects are both observed in all the experi-
ments of He on hydrogen [23]. Moreover, a new set of
results where He is introduced to the He film to de-
crease the bare chemical potential ( He acts as an impur-
ity that reduces further the already low energy to produce
a vortex core and hence will increase y) shows that indeed
T* is hardly affected but T, is strongly reduced in accord
with our proposed phase diagram. A similar analysis has
been recently given to this experiment by Zhang [24].
Although such experiments are carried out for He films
and show results consistent with our scenario, no equiv-
alent experiment was done to date for superconducting
films.

Finally we need to discuss the inhuence of disorder.
For the ordinary KT transition one does not expect
disorder to be relevant by the Harris criterion [25]
(a„~= —~). This is easy to understand from energy
considerations since the vortex-antivortex energy is

U„,, —log(R) whereas the pinning energy is constant for
the pair. On the other hand, Larkin and Ovchinikov [26]
have shown that disorder will disrupt long range position-
al order beyond a characteristic length LLo —p IW'
where W' is the width of the pinning force distribution.
For the ionic crystal the melting temperature is less than
the vortex-antivortex transition. The average intervortex
distance is several times the coherence length. Thus, p is
rather large and we expect a very large positional correla-
tion length. In fact, we may find that for small enough
samples order is maintained throughout the whole sys-
tem. If, however, LL~ is small, we may at most expect a
hexatic phase that preserves the orientational order [27].
In such a case, it is not clear that the triangular arrange-
ment will prevail. A lattice may win with a yet lower T*
transition.

In conclusion, we predict a new phase diagram for
superfluids with small vortex creation energy. We find a
new "ionic solid" phase that forms below the superAuid
transition. This phase sublimates to a bound vortex-
antivortex KT phase at lower temperatures. Our analysis

shows that the most stable crystal structure for the crys-
tal phase is the frustrated triangular lattice.
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