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We calculate the one-particle Green function of 20 fermions interacting via a long-range transverse
gauge field. Its asymptotic low-energy behavior is found within the eikonal expansion which consistently
sums the infrared divergent terms given by "maximally crossed diagrams. " Instead of power law correc-
tions to Fermi liquid theory we observe a much stronger singularity which implies a more radical break-
down of Fermi liquid theory than the usual orthogonality catastrophe.

PACS numbers: 73.20.—r

Considerable interest has focused recently on the idea
that many fermionic systems may possess "singular"
eAective interactions between the quasiparticles. In one
development, Anderson has postulated a singular form
for the fully renormalized interaction function between
fermions in two dimensions [1]. However, the problem of
singular interactions more commonly arises in a rather
diAerent way; one finds that some process or sum of dia-
grams leads to a singular form for the eAective fermion-
fermion interaction, and one would like to go beyond such
an approximation in a nonperturbative way. It is impor-
tant to realize that it is possible to do this, and to give a
treatment of theories with singular interactions in an en-
tirely consistent way [2]. It is also important to find ex-
amples of singular eAective interactions for which the mi-
croscopic basis is quite unambiguous.

In the present paper we consider just such an example,
in which the singular interaction is generated by the
transverse gauge field. In the case of relativistic elec-
tromagnetic interactions in ordinary 3D metals this prob-
lem was first considered by Holstein, Norton, and Pincus
[3] (see also [4]). In the framework of 3D QCD a simi-
lar discussion was given recently by Pethick and co-
workers [5]. The general problem can be discussed in a
standard model of spinless nonrelativistic fermions, at
zero temperature, interacting via the Abelian gauge field
A(r, t) which is described by the Hamiltonian written in

the gauge Ao =0:

transverse gauge field A~(k) = [kx A(k) l/k, discarding
the longitudinal one (it was recently shown to lead to less
singular contributions [7]). As a general fact, in a metal-
lic fermion state, with gapless charge excitations, trans-
verse gauge fluctuations are described by the (retarded)
propagator

D~J(to, q) —II;I '(to, q) = 6';, —
q;qI/q

'
i ) to/q+2fq

which is governed by RPA corrections of Fig. 1(a). The
coeScients y and g can be approximately found from the
one-loop fermion polarization. However, intending to
proceed beyond perturbation theory, we will use the ex-
pression (2) with arbitrary coefficients.

All previous attempts to analyze the efTects of the
transverse gauge interaction relied on the calculation of
the first self-energy correction shown in Fig. 1(b) which
behaves as Zpo(e) = —g (pF/my y' )(ie) and
Z3D(e) = —g eln(p/e) in 2D and 3D, respectively [3-6],
where in RPA y —g and g depends weakly on g for g

6 = ~+~+ ~ ~

(a)

H = dr Wt( —iV —gA) 'I —p%' 0'
2m

2
1

" t)A+— dr + (Vx A)2" Gt

Here we concentrate on the 2D counterpart of this prob-
lem which was first recognized in the context of gauge
models of doped Mott insulators [6].

We shall be primarily interested in the eAects of the

(b)

FIG. 1. (a) The RPA-screened transverse gauge field propa-
gator; (b) the lowest-order contribution to the fermion self-
energy.
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small. In fact, however, this contribution is only the first one in an infinite series of infrared divergent terms, which must
all be dealt with on a consistent footing. In this paper we shall perform a summation of these terms by means of the
eikonal expansion, which correctly accounts for the dominant processes of small angle scattering between the states close
to the Fermi surface [2]. This will be done here using functional methods.

To proceed with this eikonal expansion we first obtain a formal solution for the one-particle Green function
G(r, r';t, t';A) in a given external field A(r, t):

i — ( —iV —gA) +p G(r, r';t, t';A) =6(r —r')8(t —t') .
rlt 2m

(3)

This can be done in a standard way [8]; we Fourier transform in r —r' and t —t' and obtain [g(p) =p /2m —p]:

e —((p)+ p ( —iV —gA)+i1

m Bl
1

( —iV gA—) ' G (e,p;A(r, t) ) =1.
2m

(4)

The solution of (4) can be represented in the integral form

G(e, p;A(r, t)) =i daexp[ia[e —&(p)+i'~]]exp+(e, p;r, t;a), (5)

where 8~—=Bsign[g(p)], and 8=0+. Expanding @(e,p;r, t;a) as a series in the coupling constant +=+„=lg"%'„we
have a set of equations for +„:

i = i +p. . + & e, +A. . W, —)+6,, t
—p. A —6, ,2

A-8e, . g V 1, V 1 1

Ba rlt im 2m im " ' m
"' 2m

1
n —

1

g Ve, Ve„
2m q=]

This expansion provides an eScient way to find recursively all higher order corrections to the leading eikonal approxi-
mation. The latter requires only the lowest order term ~~ given by the expression

1
—exp [—ia [ (p) — (p —

q ) + to]]Vl(e, p;r, t;a) = d qdcoexp[i(tto —r q)]p A(co, q)
4(p) —4(p —q)+ ~ (7)

Substituting (7) in (5) and averaging over the gauge fluctuations with the use of (2) we obtain the following formula

[n(p) is the Fermi distribution function]:

G(~, p) =i " daexp[ia[e g(p)+—isa] j
I'

1
—exp [—ia [ (p) — (p —q) + to]]

&&exp ig d qdtoD;~. (to, q)p;p~[1 —n(p —q)]lJ o l J
l&(p) —g(p —q)+ to] '

G(~,p, )——~ '"g ' e '"exp
E

(12)
a oo

G(e,pF) =i d eax[ip(aE i+6&) —i '
g a' l

x d'
i , Hi(—z)—, (9)

& dz

where e) 0, g =g pF/mg y' and z =exp( —2itr/

3)g /e't . The special function Hi(z) is defined in terms

of Airy functions Ai(Z), Bi(z), as follows:

Notice that the result (12) is essentially nonperturbative
and nonexpandable in a power series in g . In fact, it im-

plies a more drastic breakdown of the Fermi liquid theory
(FLT) for the model (1) than Anderson's orthogonality
catastrophe [1] or any kind of Luttinger liquid behavior.
In particular, the wave function renormalization arising
from (11) is Z~, (e) —exp( —g /e' ), shown in Fig. 2.
Moreover, the one-particle distribution function n(p)
remains analytic near pF, with a finite slope; n(p) =

2

—&(p)/g', for &(p) ((g'.
A better understanding of G~, (e) is obtained by look-

ing at its physical consequences. The perturbative high-

energy limit has the dimensionless expansion parameter

g e ' (or, equivalently, e/g ). At order g ", the lead-

ing contributions to this expansion are coming from max-

t z

Hi(z) = —', Bi(z)+ [Ai(t) Bi(z) —Al(z)Bl(t)]dt .

(10)
Now at t. ))g we reproduce the lowest order result of
perturbation theory

G(e,pF) = cl I+c2,t +17K

Expanding (8) in g one generates all crossed graphs, in-

cluding the most important "maximally crossed" ones where cl =2/[J3I ( —,
' )I ( —,

' )], and c2=I ( —,
' )/3 t . How-

[2], which give the dominant singular contributions. ever, at e((g we find the asymptotic behavior
The behavior of the Green function in the vicinity of

the Fermi energy can be simply found at p =pF ..
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lieved to be described by the 2D gauge model include the
v=

2 fractional quantum Hall eA'ect [11]; it has also
been argued that the normal state of high-temperature
superconductors may be describable in these terms.

Another interesting point which arises from this calcu-
lation is that the fermions in this gauge model appear to
be beyond the reach of the bosonization methods recently
developed by Haldane [12] for higher-dimensional Fermi
liquids; this is because the spectrum is no longer linear in

the vicinity of the Fermi surface. A similar conclusion
was reached recently, by applying Haldane's methods
directly [13]. It would be interesting to see whether some
generalization of these methods could be applied to this
kind of problem (or indeed to other kinds of singular in-
teraction).

We would like to thank P. W. Anderson, F. D. M. Hal-
dane, N. P. Ong, N. V. Prokof'ev, and P. 8. Wiegmann
for interesting discussions on this and related questions.
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