VOLUME 71, NUMBER 13

PHYSICAL REVIEW LETTERS

Low-Energy Properties of Two-Dimensional Fermions with Long-Range
Current-Current Interactions

D. V. Khveshchenko'-? and P. C. E. Stamp>*

'James Franck Institute, University of Chicago, 5640 S. Ellis Avenue, Chicago, 1llinois 60637
2Landau Institute for Theoretical Physics, 2,st.Kosygina, 117940, Moscow, Russia
3Physics Department, Princeton University, Jadwin Hall, Princeton, New Jersey 08544
4Physics Department, University of British Columbia, 6224 Agricultural Road,
Vancouver, Canada V6T 1Z1
(Received 14 April 1993)

We calculate the one-particle Green function of 2D fermions interacting via a long-range transverse
gauge field. Its asymptotic low-energy behavior is found within the eikonal expansion which consistently
sums the infrared divergent terms given by “maximally crossed diagrams.” Instead of power law correc-
tions to Fermi liquid theory we observe a much stronger singularity which implies a more radical break-
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down of Fermi liquid theory than the usual orthogonality catastrophe.

PACS numbers: 73.20.—r

Considerable interest has focused recently on the idea
that many fermionic systems may possess “‘singular”
effective interactions between the quasiparticles. In one
development, Anderson has postulated a singular form
for the fully renormalized interaction function between
fermions in two dimensions [1]. However, the problem of
singular interactions more commonly arises in a rather
different way; one finds that some process or sum of dia-
grams leads to a singular form for the effective fermion-
fermion interaction, and one would like to go beyond such
an approximation in a nonperturbative way. It is impor-
tant to realize that it is possible to do this, and to give a
treatment of theories with singular interactions in an en-
tirely consistent way [2]. It is also important to find ex-
amples of singular effective interactions for which the mi-
croscopic basis is quite unambiguous.

In the present paper we consider just such an example,
in which the singular interaction is generated by the
transverse gauge field. In the case of relativistic elec-
tromagnetic interactions in ordinary 3D metals this prob-
lem was first considered by Holstein, Norton, and Pincus
[3] (see also [4]). In the framework of 3D QCD a simi-
lar discussion was given recently by Pethick and co-
workers [5]. The general problem can be discussed in a
standard model of spinless nonrelativistic fermions, at
zero temperature, interacting via the Abelian gauge field
A(r,t) which is described by the Hamiltonian written in
the gauge Ao =0:
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Here we concentrate on the 2D counterpart of this prob-
lem which was first recognized in the context of gauge
models of doped Mott insulators [6].

We shall be primarily interested in the effects of the
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transverse gauge field A, (k) =[kxA(k)1/k, discarding
the longitudinal one (it was recently shown to lead to less
singular contributions [7]). As a general fact, in a metal-
lic fermion state, with gapless charge excitations, trans-
verse gauge fluctuations are described by the (retarded)
propagator
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which is governed by RPA corrections of Fig. 1(a). The
coefficients y and y can be approximately found from the
one-loop fermion polarization. However, intending to
proceed beyond perturbation theory, we will use the ex-
pression (2) with arbitrary coefficients.

All previous attempts to analyze the effects of the
transverse gauge interaction relied on the calculation of
the first self-energy correction shown in Fig. 1(b) which
behaves as Zople) = —g2(pp/my??y'®)(ie)?® and
Z3ip(e) = —g2eln(u/e) in 2D and 3D, respectively [3-6],
where in RPA y~g and y depends weakly on g for g
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FIG. 1. (a) The RPA-screened transverse gauge field propa-
gator; (b) the lowest-order contribution to the fermion self-
energy.
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small.
all be dealt with on a consistent footing.

In fact, however, this contribution is only the first one in an infinite series of infrared divergent terms, which must
In this paper we shall perform a summation of these terms by means of the

eikonal expansion, which correctly accounts for the dominant processes of small angle scattering between the states close
to the Fermi surface [2]. This will be done here using functional methods.
To proceed with this eikonal expansion we first obtain a formal solution for the one-particle Green function

G(r,r';t,1";A) in a given external field A(r,7):
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This can be done in a standard way [8]; we Fourier transform in r —r’ and ¢ — ¢’ and obtain [£(p) =p?/2m — u):
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The solution of (4) can be represented in the integral form
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G(e,p;A(r,t))=ij;mdaexp{ia[f—5(1))+i6p]}exp\lf(6,p;r,t;a) , (5)

where 8,=5signlé(p)], and §=0". Expanding ¥(e,pir,t;a) as a series in the coupling constant ¥ =37 g"¥, we

have a set of equations for ¥,:
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This expansion provides an efficient way to find recursively all higher order corrections to the leading eikonal approxi-
mation. The latter requires only the lowest order term ¥, given by the expression
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Substituting (7) in (5) and averaging over the gauge fluctuations with the use of (2) we obtain the following formula

[n(p) is the Fermi distribution function]:
Glep) =i [ daexpliale— £(p)+i5,}

X exp

Expanding (8) in g? one generates all crossed graphs, in-
cluding the most important ‘“maximally crossed” ones
[2], which give the dominant singular contributions.

The behavior of the Green function in the vicinity of
the Fermi energy can be simply found at p =pg:
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where >0, g2=gpr/my*?y'? and z=exp(—2in/
3)g%/€'3. The special function Hi(z) is defined in terms
of Airy functions Ai(Z), Bi(z), as follows:

Hi(z) =12 Bi(z)+j;z[Ai(t)Bi(z) — Ai)Bi()]dr .
(10)

Now at > 3% we reproduce the lowest order result of
perturbation theory
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where ¢ = 2/[\/_1"( )T(2)], and ¢,=T'($)/3%3. How-
ever, at ¢ < g% we find the asymptotic behavior

3
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Notice that the result (12) is essentially nonperturbative
and nonexpandable in a power series in g2 In fact, it im-
plies a more drastic breakdown of the Fermi liquid theory
(FLT) for the model (1) than Anderson’s orthogonality
catastrophe [1] or any kind of Luttinger liquid behavior.
In particular, the wave function renormalization arising
from (11) is Z,,(e) ~exp(—g?*/e'/?), shown in Fig. 2.
Moreover, the one-particle distribution function n(p)
remains analytic near pg, with a finite slope; n(p)=£—
—&(p)/g*, for £(p) < g°.

A better understanding of G,,.(¢) is obtained by look-
ing at its physical consequences. The perturbative high-
energy limit has the dimensionless expansion parameter
&% 713 (or, equivalently, €/%). At order g%, the lead-
ing contributions to this expansion are coming from max-
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FIG. 2. A graph of Z,.(¢), the one-particle wave function
renormalization. We also show, for comparison, the behavior of
a Fermi liquid, a Luttinger liquid, and the extrapolation of the
first order perturbative result (11) to zero energy.

imally crossed graphs [2] (with n screened gauge propa-
gators). This expansion is around z =0 in (9); the Airy
functions are analytic at z=0. We note that the energy
scale g° coming from the dimensionless parameter derives
ultimately from the peculiar pole at g~ (iw)'? in
D;;(g,w); this “anomalous skin effect” type pole is also
responsible for the + power of & in (9).

The opposite low-energy (or |z|>>1) limit is nonana-
lytic in ng_m (recall that Airy functions ~expl %23/,
in the wedge of interest, when |z| — o), and in fact (12)
can be recovered directly from (9) via saddle-point in-
tegration. Thus e€=0 is a singular point of G,.(¢), so
that even though the eikonal expansion is a sum of
crossed diagrams (each of order §2"), the low-energy lim-

Ga(x1,x2x3,x5A(x)) =exp |+

In the context of the eikonal expansion this equation
plays the same role for problems involving singular in-
teractions, as the Bethe-Salpeter equation. The averag-
ing of (14) over the gauge fluctuations governed by (2)
then generates insertions of the propagator D;j(x —x")
joining two fermion lines in all possible ways, including
the all-important vertex corrections [2], which again
preserves the relevant Ward identities.

One may also calculate correlation functions starting
from (14). As one might expect from the Ward identities
the singularity in G does not necessarily appear in the
response functions; in fact we have found that the static
compressibility is finite and regular at low momenta. A
full characterization of this system must therefore await a
study of all the correlation functions.
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it is not analytic in g% we have a genuinely divergent
series.

Any physical quantity depending on the one-particle
Green function will thus show quite a different behavior
as e— 0 from the perturbative result in (11). For exam-
ple, the de Haas-van Alphen (dHvA) oscillatory mag-
netization can be calculated using the same eikonal
technique. We have verified explicitly that a factor
expl—7/6(3%/w.)r] appears in the rth harmonic of the
dHvA amplitude (o, is the cyclotron frequency); this is
analogous to the “Dingle factor”” which would appear if
impurity scattering were to smooth out the Fermi surface
over an energy ~g% Here, however, the smoothing in
n(p) arises from the interaction itself, as described above.

One can also use the eikonal technique to calculate the
entire partition function and various multipoint Green
functions summing up the most infrared divergent contri-
butions. It is particularly important to establish that the
various response functions are properly related by Ward
identities. Gauge invariance can be verified by the obser-
vation that within the leading eikonal approximation the
irreducible three-point vertex function A*(p,q) obeys the
Ward identity [g, = (w,q)]:

g A (p,q) =G ' (p)—G ' (p+q), (13)

where G(p) is taken from (8). This is also a check on
the relation between the wave-function renormalization
Z,(€) and the temporal component of A*(p,q), i.e., that
Z,(6)=Ap,q)|4—0,0/q—0. This relation is an impor-
tant check of self-consistency [2].

A closely related check on the application of the eikon-
al technique is the calculation of the two-particle Green
function which describes correlations in particle-particle
as well as particle-hole channels. A useful and efficient
way to derive this is via Schwinger’s “bilinear shift opera-
tor” [9]:

S I 5
d dx'—2— D (x—x)—2
2~£1 xfx: X a0 D TS e

x[G(x1,x3,A(x))G(x2,x4:A(x)) — (x3—x4)].

(14)

The above results indicate a breakdown of FLT in the
model (1). Moreover, the low-energy behavior found
within the eikonal approximation appears to be quite
different from either the “orthogonality catastrophe” [10]
[which involves exponentiation of logarithmic divergences
to give Z (e) ~¢€"] or the usual phase instabilities (such as
pairing or charge density wave). The initial deviation
from FLT is captured by the lowest IR-divergent dia-
gram [Fig. 1(b)], but at e~g® this power-law behavior
turns into the exponential asymptotics of Eq. (12), as
shown in Fig. 2. In view of this observation we conclude
that those physical systems which can be adequately de-
scribed by this gauge model should not be treated in the
Fermi liquid framework. Physical systems which are be-
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lieved to be described by the 2D gauge model include the
v=12% fractional quantum Hall effect [11]; it has also
been argued that the normal state of high-temperature
superconductors may be describable in these terms.

Another interesting point which arises from this calcu-
lation is that the fermions in this gauge model appear to
be beyond the reach of the bosonization methods recently
developed by Haldane [12] for higher-dimensional Fermi
liquids; this is because the spectrum is no longer linear in
the vicinity of the Fermi surface. A similar conclusion
was reached recently, by applying Haldane’s methods
directly [13]. It would be interesting to see whether some
generalization of these methods could be applied to this
kind of problem (or indeed to other kinds of singular in-
teraction).

We would like to thank P. W. Anderson, F. D. M. Hal-
dane, N. P. Ong, N. V. Prokof’ev, and P. B. Wiegmann
for interesting discussions on this and related questions.
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