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Magnetoplasmons of the Two-Dimensional Electron Grid
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We present a theory of the magnetoplasmons of two-dimensional electron grid (antidot) structures.
We develop a variational Wigner-Seitz model to study such periodic electron structures. We derive an
analytical solution for the far-infrared (FIR) response, and obtain results in quantitative agreement with
experiments. Our work provides not only an explanation for the recently observed FIR anomaly, but
also a useful basis for further theoretical studies of collective properties of electron grid (antidot) struc-
tures.
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The physics of two-dimensional electron gas (2DEG)
has been a subject of great interest. With the advance-
ment of microstructure technology, the study of the
2DEG has progressed to that of lateral superlattices
(LSLs). For these many-electron systems, while the
long-wavelength dynamic response of the uniform 2DEG
and the LSLs of quantum wires and dots can largely be
described by using the single-particle picture based on the
Kohn theorem [1), the LSLs of grids (antidots) show
many peculiarities in the magneto-optical [2,3] and mag-
netotransport measurements [4]. In the recent far-
infrared (FIR) studies of the grid structure, Kern et al.
[2] and Zhao et al. [3] observed, in the presence of mag-
netic field 8, new resonances v+ and v in addition to the
electron cyclotron resonance (CR). They show an anom-
alous level-crossing-like feature in the v-8 dispersion,
which was attributed to the breakdown of Kohn's
theorem [3]. The high-frequency v+ branch starts at
small 8 with a negative slope, and then increases in fre-
quency with 8, eventually approaching the CR. A second
low-frequency v — branch begins with zero frequency at
8 =0, rises with 8, and shows a slightly negative slope at
high 8. Moreover, the oscillator strength transfers from
the v — mode to the v+ with increasing 8, suggesting a
mixing between the v and the v+ modes. On the other
hand, the foregoing anomaly has not been experimentally
observed or theoretically predicted in similar studies of
the 2D structures where the Kohn theorem holds [5-8].
Therefore, the grid (antidot) structures constitute in-

teresting systems to study. In this Letter, we present a
theory of the magnetoplasma modes and the FIR
response of the grid (antidot) structure, and compare our
model directly with the experiments. Our work provides
not only an explanation for the observed FIR anomaly
[2,3], but also a useful basis for further theoretical stud-
ies of collective properties of electron grid (antidot) struc-
tures.

We picture the system as a thin layer of 2DEG situated
at the heterostructure interface (with the coordinate
x=0) with a square lattice of antidots, which are high
potential barriers impenetrable to electrons. The struc-
ture is bounded between two metal gates located at x =xi
and x2. The magnetic field 8 is taken to be along the x

axis. Consistent with the experiments, we shall assume
the length scales X =d))r„where X is the wavelength of
the electron density oscillation, d is the lattice constant of
the antidot array, and r, is the interelectron spacing. The
physics of long-k plasma modes belongs to the continuum
limit. In the present theory, we focus on the coarse-grain
averages of the electron density fluctuation, the electric
potential fluctuation, and the velocity field, n (p, t ),
V(p, x, t), and v(p, t), where p is a position vector on
the y-z plane. We look for the normal modes with
n(p, t) =n(p)e '"', V(p, x, t) = V(p, x)e '"', and v(p, t)
=v(p)e '"'. They satisfy the Poisson equation and the
plasma equation [5-7]

Vo +(to, —co )n =0, (I)
m

where Vo is the potential fluctuation at the x =0 plane, n,
is the average electron density, co, is the CR frequency,
and V2 is the 2D Laplacian [9].

We propose a variational Wigner-Seitz (WS) model,
which reduces the complicated problem to essentially that
of a (circular) WS cell, and treats the intracell and inter-
cell Coulomb interactions. The plan is to study the so-
called screened limit first, and to use it as a guideline for
setting up a model later for the general situation where
the Coulomb interactions are important.

In the screened limit, e.g. , xi 0, Coulomb interac-
tions in the 2DEG are reduced by the metal gate. In this
limit, one can picture it as a pair of parallel plates, i.e. , a
capacitor, with the upper end grounded. This capacitor
approximation results in a local linear relationship be-
tween Vo and n, with Vo= —exon/s~, where s~ is the
dielectric constant of the upper layer of the heterostruc-
ture. With this relation, the number of unknowns is re-
duced. For the periodic array of antidots, we write with
the Bloch theorem n(p) =e' n, (p), w'here q is a wave
vector and n, is cell periodic. For the present problem, it
su%ces to focus on the q =0 solutions, since these are the
modes excited by the FIR, which has a very long wave-
length compared to the lattice constant of the array. The
Bloch theorem transforms the many-cell problem to a
one-cell one. However, the reduced problem requires the
additional specification of boundary condition at the cell
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boundary. We derive it by adopting the idea of the WS
method [10]. First, we approximate the WS unit cell as a
circular disk, thus approximating the actual square sym-
metry by the cylindrical symmetry. With this, the solu-
tion can be written as n(p) =n(p)e' j, where j is an az-
imuthal index. With this form, (1) can be solved by us-

ing Bessel functions. The boundary condition can be tak-
en as follows:

n(p) ~~=~, =0 (dn/dp~~=~, =0) for j=odd (even), (2)

where p=po is the boundary of the circular cell, which
we take to have the same area as the actual one. The
reason behind (2) is the following. Take

~ j~ =I, for ex-
ample. At the time t =0 (tr/2cu), with the density fluc-
tuation in each unit cell equal to n(p)c os8 [n(p)sinO], the
sign of charge changes as we cross the cell boundary hor-
izontally (vertically). Hence, n(p) at the boundary must
be zero. The angular dependence of n is such that the
electron gas within each unit cell forms a dipole, implying
that the

~ j~ =1 modes are excitable by long-wavelength
electric fields. We note, for the square lattice considered
here, that the symmetries of the eigenmodes are required
to be those of the 5, P, and D states, which form the irre-
ducible representations of the symmetry group. These
states correspond to the WS solutions with

~ j~ =0, I, and
2, respectively. Moreover, we require that v~~~=~, =0 at
the hole edge, a result of the elastic reflection of an elec-
tron from the edge. With equal angles of incidence and
reflection for the edge reflection, this condition follows
from taking the coarse-grain average of the electron ve-

locity, (I/N, )+v;.
We solve the screened model and plot the solutions

of low-lying modes in Fig. 1. They consist of three
branches. Two of them, v+' (with j= 1) and v+ ' (with

j= —1), have higher frequencies than the CR; whereas
the third branch, v (with j= 1), is lower in frequency
than the CR. This figure contains several features ob-

served in the experiment. Notice in particular that, near
8=0, the v+' branch shows a negative 8 dispersion.
However, there are differences between this result and
the experiment. The calculated frequency of the v

branch saturates at high 8, while the experiments ob-
served a slightly negative dispersion in this limit, a
characteristic of the edge magnetoplasmons (EMP)
[5-7]. Further, besides the v+ ' branch, the theory pre-
dicts the existence of another eigenmode, v+, which is
degenerate with the v+' at 8=0. The existence of the
v+ ' mode is simply a consequence of symmetry, which
can be reasoned as follows. At 8=0, the two modes are
degenerate but with opposite rotations. In the presence of
8, the symmetry becomes broken, lifting the degeneracy.

Up until now, we have established a useful model that,
even with several critical approximations, is able to pro-
vide a clear qualitative picture for the physics of the
structures. In the actual experiments, however, the metal
gates were distant from the 2DEG, and did not effectively
screen the Coulomb interactions. In such and general
cases, the model predicts plasma modes that are too soft.
For a more quantitative understanding of the grid struc-
tures, it is essential to incorporate the effects of intracell
and intercell Coulomb interactions. In view of the suc-
cess of the screened model, we shall generalize it with the
constraint that, in the limit x ~ 0, the generalized model
reduce back to the screened one. The generalization is
achieved via a variational approach.

First, we construct reasonable trial functions for n(p)
and Vll(p). They are defined on the circular WS cell and
taken to have the separable form f(p)e' . By an argu-
ment parallel to the one leading to (2), we impose the
conditions (we focus on the j j~ = I case)

V, (p) i, =„=o, v, i, =, =0,

n(p)ip —
p, =0,
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which reflect the physics involved in the grid structure,
i.e., the dipole formation and the edge reflection within
each cell. With these functions, we can cast (1) and (3)
into an integral equation. Expanding n(p) =gckPk(p),
where Pt, (p) =(p —po) with k) I, we can further write
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FIG. 1. The B dispersion of low-lying plasma modes in the
screened approximation. coo+ is the zero-field v+ ' (or v+ ')
mode frequency. The relevant parameters are p; =700 A and

po =1000 A.

&Po

Gij ~ pl dpi J p2dp2Pi(pl)G(pl p2)Pj (p2)

where G(p, p') is a Green's function. In the calculation of
V;, we incorporate e-e interactions. We create a square
lattice formed with the circular WS cells, and embed the
trial functions into the lattice. For ~p

—
g;~ )po, the

functions are set to zero, where g; are the centers of the
cells. We consider the e-e interactions in this artificial
lattice and solve the Poisson equation in its reciprocal
space, giving
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FIG. 2. The zero-field v+' (Or v+ ') mode frequency vs the

electron density for the GaAs/GaAIAs heterostructure of Zhao

et al. [3]. The parameters used by the theory are directly taken

from Ref. [3]. For the parameters not listed there, we take

s] =F2=13, and m =0.067m, from the CR data of the experi-

ment.

H=
2 n, m v d p+ 2 ( e)nVod p. — (7)

The eigenmodes obtained from solving (5) and (6) are in-
serted in (7) and quantized by requiring H=6(o, mean-
ing that the energy fluctuation contained in the excited
state is due to the presence of one plasmon. With the
amplitudes of the fluctuations so fixed, the velocity field
operator, for example, is written as

v (p, t ) = ( —i / J2 )g [vt( (p )bk (t ) —H.c.],
k

where bk is the lowering operator for the kth mode, vk(p)

4po P, (G)P;(G)
V;= Cg,

tr J G G[etcoth(Gxl)+e2coth(Gx2)]

(6)
where P;(G) is the Fourier transform of P; (p)e'~, and 6
is a reciprocal lattice vector. Equations (5) and (6) con-
stitute a set of simultaneous equations for the c~.

Numerical results have been obtained by solving (5)
and (6) with eight polynomials. The zero-field v+' mode
frequencies versus electron densities are plotted in Fig. 2.
Quantitative agreement with the experiment is achieved,
which supports our treatment of the Coulomb interac-
tions.

Now, we turn to the discussion of FIR response. We
shall consider only the dominant one-photon process, in

which a photon is absorbed and the excited state contain-
ing a plasmon is created. In view of this, the plasma
eigenmodes obtained by our model have to be quantized
to properly represent the quanta of excitations (plas-
mons). This shall be carried out in the language of
second quantization. First, we write the energy fluctua-
tion in our model

FIG. 3. (a) The left panel shows the B dispersion of low-

lying modes for the GaAs/GaAIAs heterostructure of Zhao et
al. [3]. (b) The right panel shows the absorption versus B

is the quantized velocity field, and H.c. denotes the Her-
mitian conjugate. The interaction Hamiltonian between
a plasmon and the light can be expressed as H'
=fn, ( —e)v A,„ld p, where A,„I is the vector potential
of the light. The optical matrix element (It, iH'i0) is

evaluated between the ground state i0) and the excited
state ilk) containing one plasmon on the kth mode. In
the FIR limit, the absorption integrated over a resonance
frequency mk is written in terms of the matrix element as
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FIG. 4. (a) The left panel shows the B dispersion of low-

lying modes for the InGaAs/InAIAs heterostructure of Kern et
al. [2]. (b) The right panel shows the absorption versus B. The
parameters used by the theory are directly taken from Ref. [2].
For the parameters not listed there, we take s] = e2 = 14, and
m =0.046m, from the CR data of the experiment.

where e is the polarization vector of the electric field. An
evaluation of (lk iv ei0) results in the selection rule

j = ~ 1 for the unpolarized FIR excitation.
We compare our theory to the experiments in Figs. 3

and 4. Quantitative agreement is achieved in both cases.
Notice also the appearance of slightly negative dispersion
at high B in the calculation of the v branch, which was
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absent in the screened model. As shown in Figs. 3(b) and

4(b), the absorption intensity transfers from the v-
branch to the v+ ' branch as B increases. Notice that the
v+ ' mode has a strength decreasing rapidly with B. If
we assume the resonance width of the absorption is mode
independent and does not change with B, the results here
can be directly compared to the experimental transmis-
sion spectra, which are shown in the plots for comparison.
The values of B at which the v —and v+' branches have
equal strengths agree with the experiments. We have
also computed for other lji =1 modes with higher fre-
quencies and found that their strengths are smaller by or-
ders of magnitude, indicating that the oscillator strength
has been exhausted by the low-lying modes [11].

In summary, we have developed a theory of the magne-
toplasmons of electron grid (antidot) structures. The cal-
culated mode frequencies and FIR absorption agree with

the experiments. We interpret the interesting features of
such systems as the result of an interplay of B and the
unique geometry of the grid structure. It removes the ex-
istence of any j= —

1 EMP mode, and suppresses the os-
cillator strength of the v+ ' mode, as it has the opposite
sense of rotation to the cyclotron motion. On the other
hand, the v+' mode and the v —mode, having the same
sense, can share the oscillator strength.

After completing the calculation, we heard of the work

by Lorke, Jejina, and Kotthaus [12] on numerical simula-
tions of LSLs, within a classical, single-particle model of
ballistically moving electrons, which is entirely different
from our collective approach. They claim that the
single-particle model contains qualitative features of the
long-wavelength dynamic response, and suggest a gen-
eralized Kohn theorem for the LSLs.
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