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We study the morphology and dynamics of an interface driven through a disordered two-
dimensional medium by an applied force. At large length scales the interface is self-affine with
roughness exponent a = 1/2. The structure at small scales may be self-similar or self-affine, de-
pending on the degree of disorder. Simulations of wetting invasion produce self-affine interfaces with
a = 0.8 and a power law distriBution of local interface velocities. Numerical results are in excellent
agreement with experiment. A technique that distinguishes between true self-affine scaling and a
crossover is presented, and applied to the invasion model and a model for magnetic domain growth.

PACS numbers: 68.10.Gw, 05.40.+j, 47.55.Mh, 75.60.Ch

There has been tremendous recent interest in the ef-
fect of disorder on the morphology of moving interfaces
[1]. Exact results have been obtained in two dimensions
(2D) for the case of “annealed” disorder caused by time-
varying thermal or statistical fluctuations [2,3]. This
type of disorder occurs in deposition, aggregation, and
many other growth processes. Except in special cases,
the growing interface evolves into a self-affine fractal with
roughness exponent o = 1/2. Much less is known about
the effect that time-independent or “quenched” disorder
has on growing interfaces. Quenched disorder is present
when a fluid invades a porous medium or a magnetic do-
main wall moves through a random magnet. The obser-
vation of anomalously large values of & (0.7 to 0.9) in ex-
perimental studies of 2D fluid invasion [4-7] has sparked
a lively debate on the different effects of quenched and
annealed disorder [3,7-12].

Several explanations for the anomalous roughness ex-
ponents have been advanced. Medina et al. [3] noted that
annealed disorder could produce large values of « if it had
power law spatial or temporal correlations. Zhang found
that a power law distribution of local noise amplitudes
could also increase « [9]. Neither group presented an ex-
planation for the origin of such power law behavior or for
the relevance of their models to systems with quenched
disorder. However, experimental measurements of local
interface velocities reveal a power law distribution that
is consistent with Zhang’s model [10].

Martys et al. [11] noted that power law scaling arises
naturally at critical points. Their simulations of 2D fluid
invasion showed that quenched disorder pinned interfaces
until a critical driving force f. was exceeded. Studies of
the critical behavior as the force increased to f. revealed
two universality classes characterized by different inter-
face morphologies at f.. Invasion by a wetting fluid (weak
disorder) produced self-affine interfaces with a = 0.8,
while invasion by a nonwetting fluid (strong disorder)
produced self-similar interfaces (« = 1) characteristic of

Subsequent simulations of other models at f < f. show
that percolative growth occurs whenever the effect of
quenched disorder is strong [15-17]. Self-affine growth
occurs in some models when the disorder is sufficiently
weak [11,15]. In 3D, both simulations [15] and renormal-
ization group calculations [18,19] yield larger roughness
exponents for quenched disorder (2/3) than for annealed
disorder (0.4).

Kessler et al. [12] have argued that the interface is
always self-similar at f. in 2D and that the experimental
values of o are an artifact. They presented results from a
model which gave values of o near 0.75 due to a crossover
from self-similar behavior at short scales to the annealed
result, o = 1/2, at large scales.

In this paper, we compare results obtained from simu-
lations of wetting invasion to those from a model of mag-
netic domain wall motion that is known to produce self-
similar percolating interfaces. Neither model has been
studied previously at f > f.. The two models give quali-
tatively different results for the interface morphology and
dynamics. We show how the crossover from self-similar
to self-affine scaling in the magnetic model is easily dis-
tinguished from self-affine scaling with an anomalously
large roughness exponent. We then present results for
the distribution of local interface velocities. Our results
for wetting invasion are consistent with experiments [10].
Coupled with Zhang’s work on anomalous exponents [9],
they imply o = 0.8 for wetting invasion, and self-similar
structure for the magnetic model. These results agree
with direct determinations of the structure.

Since the two growth models have been described in
detail in previous papers [11,15,16,20], we will restrict
our discussion to a brief outline of the magnetic model,
followed by a comparison to the fluid invasion model.
The magnet consists of Ising spins, s; = +1, on a square
lattice with unit lattice constant. The spins interact with
a random field Ising model (RFIM) Hamiltonian:

percolation. Experiments also produce completely differ- H=—J Z $i8; + Z(H + hi)si (1)
ent patterns for wetting and nonwetting invasion [13,14). <i,j> i
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where (i,j) denotes a sum over nearest-neighbor pairs,
J > 0 is the exchange interaction, H > 0 is an exter-
nal magnetic field that favors the growth of up domains,
and h; is the local random field at each site. The val-
ues of h; are chosen from a uniform distribution on the
interval [—A, A]. When A/J is large, the spins are effec-
tively decoupled and percolating clusters are formed [21].
We present results for this regime, A/J = 6. Self-affine
growth is not found for this model [16].

In our simulations, the domain wall begins as a flat line
in the z direction that spans the width L of the system.
Periodic boundary conditions are applied along & and
the system height is unrestricted. All spins behind the
interface are up (+1), and spins in front of it are down
(—1). Growth of the up domain is started by applying
a field H > H., where H, is the critical field needed to
initiate steady motion of the interface. Only spins on
the domain wall are allowed to flip [16]. Simulations are
done at zero temperature, and spins flip when this lowers
the energy of the system. For the results presented be-
low, we assumed that the rate at which an unstable spin
flips is proportional to the energy reduction. The quanti-
ties calculated do not depend explicitly on the definition
of a time scale and other models for the dynamics gave
equivalent results [17].

Many features of the fluid invasion model are analogous
to those of the magnetic domain model. For example,
pores filled by the invading (displaced) fluid correspond
to up (down) spins. The driving force f is an applied
pressure rather than a magnetic field. In both models f
acts normal to the local orientation of the interface. Most
other models of interface motion break spatial isotropy
by imposing a preferred growth direction and many re-
quire the height of the interface along this direction to
be single valued [1-3,7-9,12]. These restrictions can pro-
duce qualitative changes in the interface morphology. For
example, they rule out self-similar fractal growth.

Disorder in the porous medium comes from variations
in pore geometry. We construct a model 2D porous
medium by placing solid disks of random radii (0.05 <
r < 0.49) on the sites of a triangular lattice of unit lat-
tice constant and width L [11,20]. The invading fluid is
injected from the bottom edge at an applied pressure P
and viscous effects are ignored. The interface consists of
arcs connecting pairs of disks. Stable arcs must intersect
both disks at the contact angle § and have curvature P/~,
where 7 is the surface tension. If these conditions cannot
be satisfied, the arc is unstable. At each time step all un-
stable arcs on the interface are advanced. The effective
coupling between neighboring arcs, and thus the effective
degree of disorder, are determined by 6 [20]. Results for
nonwetting invasion (6 > 50° in this model) are equiva-
lent to those presented below for magnetic domains, and
require more computational effort. We focus instead on
a case of wetting invasion (6 = 25°), where the interface
is self-affine at f. [11].

The external interfaces produced by the magnetic and
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FIG. 1. Interfaces generated with L = 1000 at the indi-
cated values of (f — f.)/fc for the RFIM (left) and the fluid
invasion model (right). The invading domain is below the
interface.

wetting invasion models are contrasted in Fig. 1. Rep-
resentative snapshots of moving interfaces are shown for
three values of the dimensionless driving force (f — f.)/ fc
[22]. As f decreases, the influence of quenched disorder
grows, and the interfaces roughen. The limiting structure
at f. is consistent with previous studies of the models at
f < fe [11,15,16,20]. Magnetic domain boundaries de-
velop the self-similar structure characteristic of percola-
tion, while wetting invasion interfaces remain self-affine.
Both models produce interfaces with overhangs—regions
where the interface is a multivalued function of x. How-
ever, the number and scale of overhangs is much larger
in the interfaces produced by the RFIM. Overhangs al-
low the interface to surround unfavorable regions rather
than invade them, and are observed in experiments on
both wetting and nonwetting invasion [4-7,13]. Without
them the interface could be pinned by strong disorder at
a single site.

The roughness of an interface is generally characterized
by calculating the rms fluctuation in height w(l) over in-
tervals of width [ [1]. For a self-affine fractal w(l) ~ [,
and the value of a(< 1) can be obtained from the slope
of a log-log plot. Since w grows less rapidly than [, self-
affine curves can be represented as single-valued functions
at sufficiently large scales [1]. For this reason, the rough-
ness exponent is often determined from the rms fluctua-
tion, wsy (1), of the single-valued interface formed by the
highest point at each = [4-7]. We now show that apparent
values of o obtained from w and wg, can differ dramati-
cally from each other, and from the true asymptotic value
that is found at large [.

Figure 2(a) contrasts RFIM results for w and ws, at
several values of f. Deviations between the two curves
are directly related to overhangs. Overhangs produce a
nonzero value of w(0) because there is a spread in height
at the same z. They lead to very rapid rises with [ in ws,,
because the single-valued interface makes large vertical
jumps at the edge of each overhang.

We find that the size of the largest overhangs is di-
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FIG. 2. Values of w (squares) and wsy (crosses) at the in-
dicated values of (f — f.)/fc in (a) the RFIM with L = 8000
and (b) the fluid invasion model with L = 1000. Results were
averaged over 10 to 100 independent interfaces and statistical
uncertainties are no greater than the symbol size.

rectly related to a correlation length & o (f — f.)77%,
where v = 4/3 is consistent with percolation [17]. Re-
sults for different f collapse onto a single universal curve
when w and [ are normalized by £. At lengths less than
&, the interface and invaded regions are self-similar frac-
tals whose dimensions are also consistent with those of
percolation. For | > &, results for w and ws, converge,
and an asymptotic slope of & = 1/2 is obtained [Fig.
2(a)]. This is consistent with the roughness exponent for
models with annealed disorder.

Although the structure at | < £ is not self-affine, one
may obtain apparent roughness exponents at these scales
from the slopes of the curves in Fig. 2(a). Reasonably
good fits may be obtained over a decade or more, but
the results from w and ws, are completely different. The
apparent roughness exponent obtained from w is nearly
zero, while that obtained from ws, is above 0.8. Neither
is close to the asymptotic value of 1/2 that is obtained
at large ! after the two curves join.

Kessler et al. had argued that the crossover from self-
similar percolation patterns to self-affine scaling could
produce anomalously large roughness exponents [12].
Our results show that this is only true if one considers
single-valued interfaces. The results for the full interface
are actually depressed below 1/2. Comparing w and we,
provides a useful test of whether there is a crossover or
true self-affine scaling.

The fluid invasion model produces very different re-
sults. Pinned interfaces at f. have only a few small over-
hangs, and w and ws, coincide over nearly the entire
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range of [. Both are consistent with o = 0.8. Overhangs
become more important when f is increased slightly
above f, as illustrated in Fig. 2(b) for (f — f.)/f. =
0.009. These overhangs are temporary stages of the
growth process that occur as the interface surrounds un-
favorable regions. They cause a difference between w
and wsy at small scales, but at large scales both w and
Wgy are consistent with o = 0.8. As f increases further,
overhangs disappear and w and ws, coincide over the en-
tire range of [. There is a clear crossover in both curves
from a = 0.8 at small scales to the annealed disorder
result, @ = 1/2, at large scales. The crossover length
decreases as f increases and corresponds to a correlation
length & ~ (f — f.)~*-3 [17]. A similar crossover has been
observed in experiments on wetting invasion [5].

The dynamic exponents of the two growth models are
also very different. Results for the power law relating
the mean velocity v to f — f., the power law noise in
the instantaneous velocity, and the power law describing
the total width of the interface will be presented in a
subsequent paper [17]. Here we focus on a particularly
interesting example, the exponent describing the distri-
bution of growth rates. This exponent has been mea-
sured in wetting invasion experiments [10] and is related
to Zhang’s model for anomalous roughness exponents [9].

Zhang considered a model of annealed noise with a
power law distribution of noise amplitudes and over-
damped dynamics [9]. Horvath et al. [10] noted that this
would lead to a power law distribution in the rate of ad-
vance of local sections of the interface. They determined
the experimental distribution from the displacement be-
tween single-valued interfaces, z(z), at times separated
by a small At. The effective noise amplitude and devia-
tion from the mean velocity are both proportional to

z(z,t + At) — z(z,t) — Az
Az ’ 2)

n(z,t) =

where Az = vAt is the mean displacement [23]. Horvath
et al. found a power law distribution p(n) ~ 1/np'*# with
# = 2.7(2). This corresponds to a value of a near 0.8
in Zhang’s model, which is close to the value measured
directly from the interface.

Results for p(n) from our two growth models are com-
pared in Fig. 3. In both cases we decreased Az until
the distribution became constant, and then averaged over
many pairs of interfaces. If Az was too large, fluctuations
in the local velocity averaged out and the distributions
were cut off. The distributions were also cut off by the
correlation length €. At shorter scales, the distributions
were well fit by power laws.

The exponents describing the velocity distributions for
the two models are very different: uy = 2.7(2) for wet-
ting invasion and g = 0.7(1) for the RFIM. The result
for wetting invasion is consistent with experiments [10].
The RFIM distribution has a much longer tail because
of overhangs. The single-valued interface at a given
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FIG. 3. Distribution of local interface velocities for the
RFIM with L = 3000, (f — f.)/fe = 0.017 (squares) and
the fluid invasion model with L = 1000, (f — f.)/f. = 0.009
(crosses). Statistical errors are smaller than the symbols.

jumps forward as soon as an overhang appears above it.
Zhang’s calculations yielded o =~ 0.8 for 4 = 2.7 and
self-similar growth (a = 1) for u < 2. These results are
completely consistent with direct analysis of the interface
morphology in both cases.

The results presented here clearly imply that the
anomalous roughness exponent observed in wetting in-
vasion experiments is not an artifact resulting from
a crossover between percolation and self-affine growth.
Such a crossover is easily detected by comparing the scal-
ing of w and wsy. The actual origin of the anomalous
exponent appears to be proximity to a critical point and
the associated power law behavior. At any finite velocity,
power law scaling is cut off at the correlation length. The
structure and dynamics cross over to those for annealed
noise at larger scales. Viscous effects may also introduce
cutoffs in fluid invasion experiments [6].

Power law scaling shows up directly in the distribution
of local interface velocities. While the independently de-
termined values of u and a are consistent with exper-
iment [10] and Zhang’s work, the factors determining
these exponents remain unknown. There has been re-
cent progress in developing scaling relations between crit-
ical exponents near f. [11,18,19] and this line of research
holds continued promise.
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